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Предложена модификация метода многократной взаимной синхронизации параллельных вычислительных 

потоков, которая применялась в системах спектральной оптической когерентной томографии под управлением 

вычислительных систем с центральным процессором с технологией HyperТhreading. Данная модификация 

обеспечивает равномерную вычислительную загрузку всех задействованных логических процессоров и 

снижение пиковых показателей загрузки. За счет этого была продемонстрирована устойчивая 

работоспособность вычислительного метода в условиях решения томографических задач различной сложности 

с применением мультискалярных процессоров разных поколений, разной мощности и разных производителей.  

1. ВВЕДЕНИЕ 

Описанные в этой статье методы организации параллельных вычислительных потоков 

применялись автором в программно-алгоритмическом обеспечении приборов спектральной 

оптической когерентной томографии (ОКТ) [1], разработанных в ИПФ РАН. 

Основное применение ОКТ – визуализация внутренней структуры биологических 

тканей в рамках различных биомедицинских исследований и диагностических процедур. 

ОКТ-технология основана на зондировании исследуемого объекта низкокогерентным 
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оптическим излучением ближнего инфракрасного диапазона. В спектральной ОКТ 

используется анализ спектра оптического сигнала, который является результатом 

интерференции опорного излучения и излучения, рассеянного в обратном направлении 

неоднородностями зондируемой ткани [2]. Таким образом математически синтезируется 

изображение томографического среза. Интенсивность пикселей этого изображения 

пропорциональна пространственному распределению коэффициента обратного рассеяния 

внутри исследуемого объекта. Метод ОКТ обладает высоким пространственным 

разрешением (до нескольких микрометров) и малоинвазивен за счет низкой мощности 

зондирующего излучения. 

Основная особенность ОКТ-систем, для которых применялись представленные в этой 

статье вычислительные методы, заключается в том, что пользователь определяет и 

удерживает (фиксирует) текущее положение сканирующего зонда, исходя из текущего ОКТ-

изображения. Другими словами, эти ОКТ-системы должны обеспечивать получение в 

реальном времени достоверной информации о микромасштабной структуре исследуемого 

объекта, а также нацеливание зонда в условиях физиологических движений биоткани, т. е. 

пользователю должна быть предоставлена в реальном времени наглядная информация о 

результатах его манипуляций, что должно обеспечить интерактивность его действий. Таким 

образом, формулируемая здесь задача относится к классу задач жесткого реального времени.  

Характерной конструктивной особенностью этих ОКТ-систем является то, что они 

разработаны в виде аппаратно-программных комплексов, т. е. управление ОКТ-системой, 

синтез и визуализация непрерывного потока ОКТ-изображений выполняются персональным 

компьютером в условиях функционирования операционной системы общего назначения. 

Персональный компьютер связан с прочей аппаратной частью ОКТ-системы посредством 

специально разработанной системы сбора данных и управления [3–5]. Для связи с 

компьютером в этом случае используется интерфейс USB. Так обеспечивается 

универсальность этого конструктивного решения, поскольку с точки зрения программно-

алгоритмического обеспечения не имеет значения, какой компьютер применяется 

(настольный, мобильный, или встроенный), однако применение интерфейса USB влечет 

дополнительные требования к применяемым алгоритмам.  

Вычислительные процедуры синтеза спектрального ОКТ-изображения – это сложный 

комплекс математических манипуляций, таких как преобразования Фурье, пространственная 

фильтрация и манипуляции с фазой комплексных данных. Подавляющее большинство 

известных спектральных ОКТ-систем сторонних разработчиков и производителей 

используют для решения этих задач вычислительную мощность графических процессоров 

(например [6, 7]). Но в ряде случаев такой подход неприемлем или нецелесообразен. 
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Например, это может быть связано с требованием минимизации себестоимости изделия или с 

требованием компактности и мобильности. Кроме того, в компьютерах, сертифицированных 

для применения в условиях хирургических операционных, как правило, отсутствует 

дискретная графика. Это связано с тем, что в условиях биологически-чистых помещений 

применение оборудования с принудительным воздушным охлаждением нежелательно. 

Поэтому в нашем случае используется вычислительная мощность только одного 

многоядерного центрального процессора мультискалярной архитектуры.  

Особенность функционирования интерфейса USB в условиях операционных систем 

общего назначения состоит в том, что на уровне драйвера USB-устройства передача данных 

в компьютер всегда производится мелкими порциями (например, по 256 байт для USB 2.0 и 

по 1024 байта для USB 3.0). При этом в рамках функционирования операционной системы 

общего назначения на каждую такую транзакцию центральный процессор так или иначе 

отвлекается. Отметим, что исходные данные одного кадра ОКТ-изображения (далее B-скана) 

имеют размер до нескольких мегабайт. Кроме того, применяемые алгоритмы синтеза B-скана 

в спектральной ОКТ предполагают обработку всех исходных данных, составляющих этот B-

скан. Другими словами, B-скан нельзя построить по частям. Таким образом, в случае 

чрезмерной загрузки центрального процессора вычислительными процедурами синтеза и 

визуализации ОКТ-изображений в операционной системе общего назначения неизбежны 

задержки в передаче данных по USB-каналу. Следует обратить внимание на то, что 

применяемые нами системы сбора данных и управления имеют пропускную способность, 

близкую к предельной гарантированной пропускной способности используемых в них USB-

контроллеров. Эти системы рассчитаны на непрерывный асинхронный сбор данных, т. е. 

сбор данных осуществляется непрерывно и проводится параллельно с вычислительными 

процедурами синтеза непрерывного потока B-сканов. В таких условиях задержки в передаче 

данных по USB-каналу чреваты потерями данных, и эта проблема не может быть решена 

дополнительной аппаратной буферизацией.  

Исходя из этого, мы можем сформулировать одно из основных требований к 

применяемым методам организации параллельных вычислительных потоков. Оно состоит в 

том, что для устойчивой работы такой ОКТ-системы вычислительная загрузка ни одного из 

процессорных ядер не должна достигать 100%. Это необходимо, чтобы у менеджера задач 

операционной системы всегда имелась возможность выделить необходимое количество 

процессорных ресурсов для функционирования USB-драйвера и прочих системных сервисов.  

Логично предположить, что равномерное распределение вычислительной загрузки 

процессорных ядер в определенных условиях позволяет это обеспечить. Описанию таких 

методов параллельных вычислений посвящается настоящая статья. 
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2. МЕТОД МНОГОКРАТНОЙ ВЗАИМНОЙ СИНХРОНИЗАЦИИ ПАРАЛЛЕЛЬНЫХ 

ВЫЧИСЛИТЕЛЬНЫХ ПОТОКОВ 

Ранее для решения поставленной выше задачи автором был предложен метод 

многократной взаимной синхронизации параллельных вычислительных потоков [8]. Общая 

концепция метода состоит в том, что на начальном этапе инициализации основной 

пользовательской программы создается N приостановленных вычислительных потоков. N 

равно числу доступных логических процессоров. Каждый из этих N вычислительных 

потоков жестко ассоциируется с одним из доступных логических процессоров. Таким 

образом, каждый из этих потоков будет выполняться в отдельном логическом процессоре. 

Эти потоки выполняют одну и ту же процедуру, показанную на рис. 1. Кроме того, создается 

еще один приостановленный асинхронный вычислительный поток, предназначенный для 

процедуры непосредственного отображения готового B-скана на мониторе. Этот поток не 

имеет жесткой ассоциации с конкретным логическим процессором.  

Рис. 1. 

 

На рис. 1 показано, что общий алгоритм разбит на K этапов. Это разбиение необходимо 

в тех случаях, когда каждый следующий этап зависит от результатов предыдущего. В 

противном случае K = 1. Эти этапы разделены процедурами сообщения о готовности 

соответствующего блока вычислений и процедурами ожидания общей готовности.  

Внутри каждого этапа выполняется M процедур, доступных для параллельного 

вычисления. Данный метод основан на том, что, в частности, для алгоритмов спектральной 

ОКТ справедливо утверждение, что в большинстве случаев можно реализовать обработку 

промежуточных данных так, что M > N (в случае использования центрального процессора 

настольного или мобильного типа). Предложенный метод организован так, что на каждом из 

K этапов одновременно выполняется N из M алгоритмически одинаковых процедур, 

обозначенных на блок-схеме рис. 1 как “Блок вычислений n”. Это происходит за счет 

особенности организации основных циклов обработки. Они обозначены на блок-схеме рис. 1 

как “Шаг на N”. На языке C++ организация такого цикла может быть записана в виде 

for(int i = P; i < M; i += N) {…}, 

где P – номер текущего вычислительного потока от 0 до N–1, или, другими словами, номер 

логического процессора, используемого этим потоком. 

Практическое использование метода многократной взаимной синхронизации 

параллельных вычислительных потоков продемонстрировало возможность равномерного 

распределения вычислительной нагрузки на все используемые процессорные ядра. Этот 
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фактор позволяет уменьшить максимальную пиковую нагрузку для каждого процессорного 

ядра, что способствует стабильной работе асинхронных процедур сбора данных и 

предотвращает потери данных и соответствующие аварийные ситуации. 

3. ПАРАЛЛЕЛЬНЫЕ ВЫЧИСЛЕНИЯ ПРИ ИСПОЛЬЗОВАНИИ ПРОЦЕССОРОВ С 

ТЕХНОЛОГИЕЙ HyperТhreading 

Описанный выше метод многократной взаимной синхронизации параллельных 

вычислительных потоков гарантирует однозначный положительный результат в условиях 

использования центрального процессора, в котором число логических процессоров равно 

числу процессорных ядер. Однако это условие не выполняется для мультискалярных 

процессоров с технологией HyperThreading [9].  

Технология HyperThreading удваивает количество логических процессоров, доступных 

для параллельного использования, по сравнению с количеством ядер центрального 

процессора. Суть данной технологии состоит в том, что каждое процессорное ядро содержит 

избыточное количество виртуальных регистров общего назначения, два конвейера, два 

контроллера прерываний, и это ядро может хранить два состояния процессора. Таким 

образом, некоторые не задействованные в данный момент ресурсы могут выполнять 

действия параллельно другим текущим действиям. 

Эта технология вполне эффективна в условиях обычного функционирования 

многозадачной операционной системы общего назначения, когда одновременно 

выполняются несколько разных пользовательских приложений и системных сервисов. В 

этом случае вероятность того, что в данный момент задействуются одинаковые ресурсы 

процессорного ядра, невелика. Однако в случае работы алгоритма параллельных 

вычислений, описанного выше, одновременно выполняются процедуры, которые одинаковы 

с алгоритмической точки зрения, и при использовании технологии HyperThreading 

неизбежна постоянная конкуренция между разными вычислительными потоками за доступ к 

ресурсам процессора.  

Для решения таких проблем был проведен ряд экспериментов с применением 

компьютеров на базе различных процессоров и нескольких модификаций ОКТ-систем с 

различными степенями сложности вычислительных алгоритмов. В результате была выявлена 

некоторая закономерность, которая может быть проиллюстрирована следующим образом.  

На рис. 2 приведена хронология загрузки логических процессоров у центрального 

процессора Core i3-12100 с отключенным режимом HyperThreading в процессе работы ОКТ-

системы. Здесь наглядно продемонстрировано обеспечение равномерного распределения 

вычислительной нагрузки при помощи метода многократной взаимной синхронизации 
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параллельных вычислительных потоков. В этом случае число логических процессоров 

совпадает с числом процессорных ядер. Стоит обратить внимание, что средняя загрузка 

процессора в этом случае превышает 61%.  

Рис. 2. 

 

На рис. 3 продемонстрирована загрузка логических процессоров того же центрального 

процессора, но с включенным режимом HyperThreading. В этом случае число логических 

процессоров увеличилось вдвое. Применялась та же OKT-система с аналогичной 

организацией параллельных вычислений. Стоит отметить, что эта программа управления 

ОКТ-системой автоматически распределяет вычислительные потоки на все доступные 

логические процессоры. В этом случае средняя загрузка процессора составила примерно 46–

47%. Однако вычислительная загрузка логических процессоров стала неравномерной, что 

является следствием конкуренции алгоритмически-одинаковых процедур за ресурсы 

процессорного ядра.  

Рис. 3. 

 

Для решения этой проблемы была предложена и реализована следующая модификация 

описанного выше метода. Основная идея состоит в том, чтобы ассоциировать с каждым 

логическим процессором не один вычислительный поток, а несколько. Тогда параллельное 

выполнение этих нескольких вычислительных потоков будет сдвинуто во времени друг 

относительно друга менеджером задач операционной системы. Таким образом, появляется 

возможность более равномерного распределения вычислительной загрузки логических 

процессоров в режиме HyperThreading. 

Такая модификация была осуществлена следующим образом. Концептуальная блок-

схема вычислительных потоков осталась такой же, как на рис. 1, но было принято решение 

всегда создавать 32 потока (то есть N = 32). В случае наличия 4 логических процессоров с 

каждым из них будет ассоциировано 8 вычислительных потоков, в случае 8 процессоров – 4 

потока и т.д. Результат работы такого метода продемонстрирован на рис. 4. Наблюдается в 

значительной степени равномерное распределение вычислительной нагрузки. Средняя 

загрузка процессора составила около 47%. Практика показывает, что средняя загрузка 

процессора увеличивается в этом случае незначительно, в пределах 1–2%. 

Рис. 4. 

 

Практическую значимость такого метода можно проиллюстрировать тем фактом, что, 

например, при применении процессора Core i3-12100T (менее производительного, но с 
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меньшим тепловыделением) с такой же ОКТ-системой представленная модификация метода 

организации параллельных вычислений обеспечивает устойчивую работоспособность. При 

этом немодифицированный метод дает сбои в работе программного обеспечения, так как 

иногда пиковая загрузка некоторых логических процессоров достигает 100%. 

4. ЗАКЛЮЧЕНИЕ 

Описанная в данной работе модификация метода многократной взаимной 

синхронизации параллельных вычислительных потоков продемонстрировала свою 

работоспособность в условиях задач различной сложности с применением центральных 

процессоров разных поколений, разной мощности и разных производителей.  

Эффективность этого метода позволила практически реализовать некоторые 

дополнительные модальности ОКТ. В частности, к таким модальностям относятся 

визуализация микрокапиллярного кровотока [10] и компрессионная эластография [11].  

Дополнительная возможность значительного усложнения применяемых ОКТ-

алгоритмов обеспечила значительное улучшение качества структурных ОКТ-изображений за 

счет применения различных методов подавления артефактов спектральной ОКТ [12–18]. 
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ПОДПИСИ К РИСУНКАМ 

Рис. 1.  Блок-схема потоков параллельных вычислений с многократной синхронизацией. 

Рис. 2.  Диаграмма загрузки логических процессоров в условиях применения метода 

многократной взаимной синхронизации параллельных вычислительных потоков при 

отключенном режиме HyperThreading . 

Рис. 3.  Диаграмма загрузки логических процессоров в условиях применения метода 

многократной взаимной синхронизации параллельных вычислительных потоков при 

включенном режиме HyperThreading. 

Рис. 4.  Диаграмма загрузки логических процессоров в условиях применения 

модифицированного метода многократной взаимной синхронизации параллельных 

вычислительных потоков при включенном режиме HyperThreading. 
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Рис. 2 



 

12 

 

Рис. 3 
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