

1

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА, 2026, № 1

ПРИМЕНЕНИЕ ВЫЧИСЛИТЕЛЬНОЙ

ТЕХНИКИ В ЭКСПЕРИМЕНТЕ

УДК 519.683.8

МОДИФИКАЦИЯ МЕТОДА МНОГОКРАТНОЙ ВЗАИМНОЙ

СИНХРОНИЗАЦИИ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ

ПОТОКОВ ДЛЯ ПРОЦЕССОРОВ С ТЕХНОЛОГИЕЙ

HYPERТHREADING

©2026 г. С. Ю. Ксенофонтов
a,
*

a
 Институт прикладной физики им. А.В. Гапонова-Грехова

Российской академии наук

Россия, 603950, Нижний Новгород, ул. Ульянова, 46

*e-mail: xen@ipfran.ru

Поступила в редакцию 31.07.2025 г.

 После доработки 22.09.2025 г.

Принята к публикации 02.10.2025 г.

Предложена модификация метода многократной взаимной синхронизации параллельных вычислительных

потоков, которая применялась в системах спектральной оптической когерентной томографии под управлением

вычислительных систем с центральным процессором с технологией HyperТhreading. Данная модификация

обеспечивает равномерную вычислительную загрузку всех задействованных логических процессоров и

снижение пиковых показателей загрузки. За счет этого была продемонстрирована устойчивая

работоспособность вычислительного метода в условиях решения томографических задач различной сложности

с применением мультискалярных процессоров разных поколений, разной мощности и разных производителей.

1. ВВЕДЕНИЕ

Описанные в этой статье методы организации параллельных вычислительных потоков

применялись автором в программно-алгоритмическом обеспечении приборов спектральной

оптической когерентной томографии (ОКТ) [1], разработанных в ИПФ РАН.

Основное применение ОКТ – визуализация внутренней структуры биологических

тканей в рамках различных биомедицинских исследований и диагностических процедур.

ОКТ-технология основана на зондировании исследуемого объекта низкокогерентным

2

оптическим излучением ближнего инфракрасного диапазона. В спектральной ОКТ

используется анализ спектра оптического сигнала, который является результатом

интерференции опорного излучения и излучения, рассеянного в обратном направлении

неоднородностями зондируемой ткани [2]. Таким образом математически синтезируется

изображение томографического среза. Интенсивность пикселей этого изображения

пропорциональна пространственному распределению коэффициента обратного рассеяния

внутри исследуемого объекта. Метод ОКТ обладает высоким пространственным

разрешением (до нескольких микрометров) и малоинвазивен за счет низкой мощности

зондирующего излучения.

Основная особенность ОКТ-систем, для которых применялись представленные в этой

статье вычислительные методы, заключается в том, что пользователь определяет и

удерживает (фиксирует) текущее положение сканирующего зонда, исходя из текущего ОКТ-

изображения. Другими словами, эти ОКТ-системы должны обеспечивать получение в

реальном времени достоверной информации о микромасштабной структуре исследуемого

объекта, а также нацеливание зонда в условиях физиологических движений биоткани, т. е.

пользователю должна быть предоставлена в реальном времени наглядная информация о

результатах его манипуляций, что должно обеспечить интерактивность его действий. Таким

образом, формулируемая здесь задача относится к классу задач жесткого реального времени.

Характерной конструктивной особенностью этих ОКТ-систем является то, что они

разработаны в виде аппаратно-программных комплексов, т. е. управление ОКТ-системой,

синтез и визуализация непрерывного потока ОКТ-изображений выполняются персональным

компьютером в условиях функционирования операционной системы общего назначения.

Персональный компьютер связан с прочей аппаратной частью ОКТ-системы посредством

специально разработанной системы сбора данных и управления [3–5]. Для связи с

компьютером в этом случае используется интерфейс USB. Так обеспечивается

универсальность этого конструктивного решения, поскольку с точки зрения программно-

алгоритмического обеспечения не имеет значения, какой компьютер применяется

(настольный, мобильный, или встроенный), однако применение интерфейса USB влечет

дополнительные требования к применяемым алгоритмам.

Вычислительные процедуры синтеза спектрального ОКТ-изображения – это сложный

комплекс математических манипуляций, таких как преобразования Фурье, пространственная

фильтрация и манипуляции с фазой комплексных данных. Подавляющее большинство

известных спектральных ОКТ-систем сторонних разработчиков и производителей

используют для решения этих задач вычислительную мощность графических процессоров

(например [6, 7]). Но в ряде случаев такой подход неприемлем или нецелесообразен.

3

Например, это может быть связано с требованием минимизации себестоимости изделия или с

требованием компактности и мобильности. Кроме того, в компьютерах, сертифицированных

для применения в условиях хирургических операционных, как правило, отсутствует

дискретная графика. Это связано с тем, что в условиях биологически-чистых помещений

применение оборудования с принудительным воздушным охлаждением нежелательно.

Поэтому в нашем случае используется вычислительная мощность только одного

многоядерного центрального процессора мультискалярной архитектуры.

Особенность функционирования интерфейса USB в условиях операционных систем

общего назначения состоит в том, что на уровне драйвера USB-устройства передача данных

в компьютер всегда производится мелкими порциями (например, по 256 байт для USB 2.0 и

по 1024 байта для USB 3.0). При этом в рамках функционирования операционной системы

общего назначения на каждую такую транзакцию центральный процессор так или иначе

отвлекается. Отметим, что исходные данные одного кадра ОКТ-изображения (далее B-скана)

имеют размер до нескольких мегабайт. Кроме того, применяемые алгоритмы синтеза B-скана

в спектральной ОКТ предполагают обработку всех исходных данных, составляющих этот B-

скан. Другими словами, B-скан нельзя построить по частям. Таким образом, в случае

чрезмерной загрузки центрального процессора вычислительными процедурами синтеза и

визуализации ОКТ-изображений в операционной системе общего назначения неизбежны

задержки в передаче данных по USB-каналу. Следует обратить внимание на то, что

применяемые нами системы сбора данных и управления имеют пропускную способность,

близкую к предельной гарантированной пропускной способности используемых в них USB-

контроллеров. Эти системы рассчитаны на непрерывный асинхронный сбор данных, т. е.

сбор данных осуществляется непрерывно и проводится параллельно с вычислительными

процедурами синтеза непрерывного потока B-сканов. В таких условиях задержки в передаче

данных по USB-каналу чреваты потерями данных, и эта проблема не может быть решена

дополнительной аппаратной буферизацией.

Исходя из этого, мы можем сформулировать одно из основных требований к

применяемым методам организации параллельных вычислительных потоков. Оно состоит в

том, что для устойчивой работы такой ОКТ-системы вычислительная загрузка ни одного из

процессорных ядер не должна достигать 100%. Это необходимо, чтобы у менеджера задач

операционной системы всегда имелась возможность выделить необходимое количество

процессорных ресурсов для функционирования USB-драйвера и прочих системных сервисов.

Логично предположить, что равномерное распределение вычислительной загрузки

процессорных ядер в определенных условиях позволяет это обеспечить. Описанию таких

методов параллельных вычислений посвящается настоящая статья.

4

2. МЕТОД МНОГОКРАТНОЙ ВЗАИМНОЙ СИНХРОНИЗАЦИИ ПАРАЛЛЕЛЬНЫХ

ВЫЧИСЛИТЕЛЬНЫХ ПОТОКОВ

Ранее для решения поставленной выше задачи автором был предложен метод

многократной взаимной синхронизации параллельных вычислительных потоков [8]. Общая

концепция метода состоит в том, что на начальном этапе инициализации основной

пользовательской программы создается N приостановленных вычислительных потоков. N

равно числу доступных логических процессоров. Каждый из этих N вычислительных

потоков жестко ассоциируется с одним из доступных логических процессоров. Таким

образом, каждый из этих потоков будет выполняться в отдельном логическом процессоре.

Эти потоки выполняют одну и ту же процедуру, показанную на рис. 1. Кроме того, создается

еще один приостановленный асинхронный вычислительный поток, предназначенный для

процедуры непосредственного отображения готового B-скана на мониторе. Этот поток не

имеет жесткой ассоциации с конкретным логическим процессором.

Рис. 1.

На рис. 1 показано, что общий алгоритм разбит на K этапов. Это разбиение необходимо

в тех случаях, когда каждый следующий этап зависит от результатов предыдущего. В

противном случае K = 1. Эти этапы разделены процедурами сообщения о готовности

соответствующего блока вычислений и процедурами ожидания общей готовности.

Внутри каждого этапа выполняется M процедур, доступных для параллельного

вычисления. Данный метод основан на том, что, в частности, для алгоритмов спектральной

ОКТ справедливо утверждение, что в большинстве случаев можно реализовать обработку

промежуточных данных так, что M > N (в случае использования центрального процессора

настольного или мобильного типа). Предложенный метод организован так, что на каждом из

K этапов одновременно выполняется N из M алгоритмически одинаковых процедур,

обозначенных на блок-схеме рис. 1 как “Блок вычислений n”. Это происходит за счет

особенности организации основных циклов обработки. Они обозначены на блок-схеме рис. 1

как “Шаг на N”. На языке C++ организация такого цикла может быть записана в виде

for(int i = P; i < M; i += N) {…},

где P – номер текущего вычислительного потока от 0 до N–1, или, другими словами, номер

логического процессора, используемого этим потоком.

Практическое использование метода многократной взаимной синхронизации

параллельных вычислительных потоков продемонстрировало возможность равномерного

распределения вычислительной нагрузки на все используемые процессорные ядра. Этот

5

фактор позволяет уменьшить максимальную пиковую нагрузку для каждого процессорного

ядра, что способствует стабильной работе асинхронных процедур сбора данных и

предотвращает потери данных и соответствующие аварийные ситуации.

3. ПАРАЛЛЕЛЬНЫЕ ВЫЧИСЛЕНИЯ ПРИ ИСПОЛЬЗОВАНИИ ПРОЦЕССОРОВ С

ТЕХНОЛОГИЕЙ HyperТhreading

Описанный выше метод многократной взаимной синхронизации параллельных

вычислительных потоков гарантирует однозначный положительный результат в условиях

использования центрального процессора, в котором число логических процессоров равно

числу процессорных ядер. Однако это условие не выполняется для мультискалярных

процессоров с технологией HyperThreading [9].

Технология HyperThreading удваивает количество логических процессоров, доступных

для параллельного использования, по сравнению с количеством ядер центрального

процессора. Суть данной технологии состоит в том, что каждое процессорное ядро содержит

избыточное количество виртуальных регистров общего назначения, два конвейера, два

контроллера прерываний, и это ядро может хранить два состояния процессора. Таким

образом, некоторые не задействованные в данный момент ресурсы могут выполнять

действия параллельно другим текущим действиям.

Эта технология вполне эффективна в условиях обычного функционирования

многозадачной операционной системы общего назначения, когда одновременно

выполняются несколько разных пользовательских приложений и системных сервисов. В

этом случае вероятность того, что в данный момент задействуются одинаковые ресурсы

процессорного ядра, невелика. Однако в случае работы алгоритма параллельных

вычислений, описанного выше, одновременно выполняются процедуры, которые одинаковы

с алгоритмической точки зрения, и при использовании технологии HyperThreading

неизбежна постоянная конкуренция между разными вычислительными потоками за доступ к

ресурсам процессора.

Для решения таких проблем был проведен ряд экспериментов с применением

компьютеров на базе различных процессоров и нескольких модификаций ОКТ-систем с

различными степенями сложности вычислительных алгоритмов. В результате была выявлена

некоторая закономерность, которая может быть проиллюстрирована следующим образом.

На рис. 2 приведена хронология загрузки логических процессоров у центрального

процессора Core i3-12100 с отключенным режимом HyperThreading в процессе работы ОКТ-

системы. Здесь наглядно продемонстрировано обеспечение равномерного распределения

вычислительной нагрузки при помощи метода многократной взаимной синхронизации

6

параллельных вычислительных потоков. В этом случае число логических процессоров

совпадает с числом процессорных ядер. Стоит обратить внимание, что средняя загрузка

процессора в этом случае превышает 61%.

Рис. 2.

На рис. 3 продемонстрирована загрузка логических процессоров того же центрального

процессора, но с включенным режимом HyperThreading. В этом случае число логических

процессоров увеличилось вдвое. Применялась та же OKT-система с аналогичной

организацией параллельных вычислений. Стоит отметить, что эта программа управления

ОКТ-системой автоматически распределяет вычислительные потоки на все доступные

логические процессоры. В этом случае средняя загрузка процессора составила примерно 46–

47%. Однако вычислительная загрузка логических процессоров стала неравномерной, что

является следствием конкуренции алгоритмически-одинаковых процедур за ресурсы

процессорного ядра.

Рис. 3.

Для решения этой проблемы была предложена и реализована следующая модификация

описанного выше метода. Основная идея состоит в том, чтобы ассоциировать с каждым

логическим процессором не один вычислительный поток, а несколько. Тогда параллельное

выполнение этих нескольких вычислительных потоков будет сдвинуто во времени друг

относительно друга менеджером задач операционной системы. Таким образом, появляется

возможность более равномерного распределения вычислительной загрузки логических

процессоров в режиме HyperThreading.

Такая модификация была осуществлена следующим образом. Концептуальная блок-

схема вычислительных потоков осталась такой же, как на рис. 1, но было принято решение

всегда создавать 32 потока (то есть N = 32). В случае наличия 4 логических процессоров с

каждым из них будет ассоциировано 8 вычислительных потоков, в случае 8 процессоров – 4

потока и т.д. Результат работы такого метода продемонстрирован на рис. 4. Наблюдается в

значительной степени равномерное распределение вычислительной нагрузки. Средняя

загрузка процессора составила около 47%. Практика показывает, что средняя загрузка

процессора увеличивается в этом случае незначительно, в пределах 1–2%.

Рис. 4.

Практическую значимость такого метода можно проиллюстрировать тем фактом, что,

например, при применении процессора Core i3-12100T (менее производительного, но с

7

меньшим тепловыделением) с такой же ОКТ-системой представленная модификация метода

организации параллельных вычислений обеспечивает устойчивую работоспособность. При

этом немодифицированный метод дает сбои в работе программного обеспечения, так как

иногда пиковая загрузка некоторых логических процессоров достигает 100%.

4. ЗАКЛЮЧЕНИЕ

Описанная в данной работе модификация метода многократной взаимной

синхронизации параллельных вычислительных потоков продемонстрировала свою

работоспособность в условиях задач различной сложности с применением центральных

процессоров разных поколений, разной мощности и разных производителей.

Эффективность этого метода позволила практически реализовать некоторые

дополнительные модальности ОКТ. В частности, к таким модальностям относятся

визуализация микрокапиллярного кровотока [10] и компрессионная эластография [11].

Дополнительная возможность значительного усложнения применяемых ОКТ-

алгоритмов обеспечила значительное улучшение качества структурных ОКТ-изображений за

счет применения различных методов подавления артефактов спектральной ОКТ [12–18].

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания Института прикладной физики

им. А.В. Гапонова-Грехова РАН (проект № FFUF-2024-0029).

СПИСОК ЛИТЕРАТУРЫ

1. Optical coherence tomography: Technology and applications / Ed. by W. Drexler, J.G.

Fujimoto. Springer, 2015. http://doi.org/10.1007/978-3-319-06419-2

2. Fercher A.F., Hitzenberger C.K., Kamp G., El-Zaiat S.Y. // Opt. Commun. 1995. V. 117. № 1-

2. P. 43. http://doi.org/10.1016/0030-4018(95)00119-S

3. Геликонов В.М., Геликонов Г.В., Терпелов Д.А., Шилягин П.А. // ПТЭ. 2012. № 3.

С. 100. https://www.elibrary.ru/item.asp?id=17726204

4. Терпелов Д.А., Ксенофонтов С.Ю., Геликонов Г.В., Геликонов В.М., Шилягин П.А. // ПТЭ.

2017. № 6. С. 94. http://doi.org/10.7868/S0032816217060143

5. Ксенофонтов С.Ю., Купаев А.В., Василенкова Т.В., Терпелов Д.А., Шилягин П.А.,

Моисеев А.А., Геликонов Г.В. // ПТЭ. 2021. № 5. С. 131.

http://doi.org/10.31857/S0032816221040224

http://doi.org/10.1007/978-3-319-06419-2
http://doi.org/10.1016/0030-4018(95)00119-S
https://www.elibrary.ru/item.asp?id=17726204
http://doi.org/10.7868/S0032816217060143
http://doi.org/10.31857/S0032816221040224

8

6. Majumdar A., Allam N., Zabel W.J., Demidov V., Flueraru C., Vitkin A. // Sci. Rep. 2022. V.

12. P. 13995. http://doi.org/10.1038/s41598-022-18393-4

7. Kim W., Long R., Yang Z., Oghalai J.S., Applegate B.E. // J. Biomed. Opt. 2024. V. 29 № 8. P.

086005. http://doi.org/10.1117/1.JBO.29.8.086005

8. Ксенофонтов С.Ю. // ПТЭ. 2019. № 3. С. 17. http://doi.org/10.1134/S0032816219030078

9. Marr D.T., Binns F., Hill D.L., Hinton G., Koufaty D.A., Miller J.A., Upton M. // Intel

Technology J. 2002. V. 6. № 1. P. 4.

10. Maslennikova A.V., Sirotkina M.A., Moiseev A.A. et al. // Sci. Rep. 2017. V. 7. P. 16505.

http://doi.org/10.1038/s41598-017-16823-2

11. Zaitsev V.Y., Ksenofontov S.Y., Sovetsky A.A., Matveyev A.L., Matveev L.A., Zykov A.A.,

Gelikonov G.V. // Photonics. 2021. V. 8. № 12. P. 527.

http://doi.org/10.3390/photonics8120527

12. Ксенофонтов С.Ю., Терпелов Д.А., Геликонов Г.В., Шилягин П.А., Геликонов В.М. // Изв.

вузов. Радиофизика. 2019. Т. 62. № 2. С. 167. https://www.elibrary.ru/item.asp?id=37749323

13. Геликонов Г.В., Ксенофонтов С.Ю., Шилягин П.А., Геликонов В.М. // Изв. вузов.

Радиофизика. 2019. Т. 62. № 3. С. 252. https://www.elibrary.ru/item.asp?id=38480973

14. Ксенофонтов С.Ю., Шилягин П.А., Терпелов Д.А., Новожилов А.А., Геликонов В.М.,

Геликонов Г.В. // ПТЭ. 2020. № 1. С. 136. http://doi.org/10.31857/S003281622001005X

15. Ксенофонтов С.Ю., Моисеев А.А., Маткивский В.А., Шилягин П.А., Василенкова Т.В.,

Геликонов В.М., Геликонов Г.В. // ПТЭ. 2020. № 5. С. 104.

http://doi.org/10.31857/S0032816220040291

16. Ksenofontov S.Y., Shilyagin P.A., Terpelov D.A., Shabanov D.V., Gelikonov V.M., Gelikonov G.V.

// Front. Optoelectron. 2020. V. 13 № 4. P. 393. http://doi.org/10.1007/S12200-019-0951-0

17. Ksenofontov S.Y., Shilyagin P.A., Gelikonov V.M., Gelikonov G.V. // Photonics. 2023. V. 10 №

7. P. 736. http://doi.org/10.3390/photonics10070736

18. Ксенофонтов С.Ю., Шилягин П.А., Терпелов Д.А., Шабанов Д.В., Геликонов В.М.,

Геликонов Г.В. // ПТЭ. 2023. № 6. С. 154. http://doi.org/10.31857/S0032816223050312

http://doi.org/10.1038/s41598-022-18393-4
http://doi.org/10.1117/1.JBO.29.8.086005
http://doi.org/10.1134/S0032816219030078
http://doi.org/10.1038/s41598-017-16823-2
http://doi.org/10.3390/photonics8120527
https://www.elibrary.ru/item.asp?id=37749323
https://www.elibrary.ru/item.asp?id=38480973
http://doi.org/10.31857/S003281622001005X
http://doi.org/10.31857/S0032816220040291
http://doi.org/10.1007/S12200-019-0951-0
http://doi.org/10.3390/photonics10070736
http://doi.org/10.31857/S0032816223050312

9

ПОДПИСИ К РИСУНКАМ

Рис. 1. Блок-схема потоков параллельных вычислений с многократной синхронизацией.

Рис. 2. Диаграмма загрузки логических процессоров в условиях применения метода

многократной взаимной синхронизации параллельных вычислительных потоков при

отключенном режиме HyperThreading .

Рис. 3. Диаграмма загрузки логических процессоров в условиях применения метода

многократной взаимной синхронизации параллельных вычислительных потоков при

включенном режиме HyperThreading.

Рис. 4. Диаграмма загрузки логических процессоров в условиях применения

модифицированного метода многократной взаимной синхронизации параллельных

вычислительных потоков при включенном режиме HyperThreading.

10

Рис. 1

11

Рис. 2

12

Рис. 3

13

Рис. 4

