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РЭД-100 – двухфазный эмиссионный детектор с ксеноном в качестве рабочего вещества, предназначенный для 

изучения упругого когерентного рассеяния нейтрино на ядрах с использованием реакторных антинейтрино на 

Калининской АЭС. В детекторах такого типа отклик от совпадения по времени нескольких одиночных 

электронов ионизации может быть очень похожим или полностью совпадать с откликом от событий упругого 

когерентного рассеяния нейтрино. В настоящей работе изложены методы подавления данной компоненты фона с 

использованием алгоритмов машинного обучения. 
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1. ВВЕДЕНИЕ 

РЭД-100 – двухфазный эмиссионный детектор [1], разработанный для изучения 

упругого когерентного рассеяния нейтрино (УКРН) на ядрах [2–4], с жидким ксеноном весом 

126 кг в рабочем объеме. Регистрация сигналов в данном детекторе проводится с помощью 19 

фотоэлектронных умножителей (ФЭУ), расположенных сверху от рабочего объема, и 4 ФЭУ в 

нижней части. В 2021–2022  гг. на Калининской АЭС (КАЭС) был проведен эксперимент с 

использованием детектора РЭД-100, направленный на исследование УКРН. Расчетный поток 

антинейтрино в месте расположения детектора составляет 1.4·1013 см
–2

·с
–1

. Описание 

конструкции детектора и подробности экспозиции на КАЭС можно найти в работах [5, 6]. 

Основной результат эксперимента, заключающийся в установлении первого ограничения на 

величину сигнала УКРН от реакторных антинейтрино на ксеноне, а также детали обработки и 

анализа данных, изложены в работе [7]. 

Двухфазные эмиссионные детекторы являются крайне чувствительными приборами, 

что позволяет регистрировать электролюминесценцию от одиночных электронов (single 

electron, SE) ионизации [8, 9]. Наличие сигналов от свободных электронов в двухфазных 

детекторах – хорошо известное явление, наблюдаемое в экспериментах по поиску темной 

материи. Оно может быть связано со взаимодействиями низкой энергии в рабочем объеме, 

фотоионизацией электродов и растворенных в ксеноне примесей [10–12], или с так 

называемой спонтанной эмиссией одиночных электронов с поверхности жидкости.  Точная 

природа спонтанных одиночных электронов неизвестна, хотя наблюдаются корреляции с 

предшествующими большими энерговыделениями [13–15], концентрацией 

электроотрицательных примесей в жидком ксеноне [11] и напряженностью электрического 

поля [12, 16, 17]. В настоящей работе обсуждается метод подавления фона от случайного 

совпадения во времени сигналов от свободных электронов при помощи алгоритмов 

машинного обучения. 

2. ПОДГОТОВКА ДАННЫХ 

В результате взаимодействия нейтрино с ядрами ксенона в РЭД-100 по каналу УКРН 

возникает несколько электронов ионизации (как правило, до 10) в одной точке в жидкости. 

Эти электроны под действием электрического поля дрейфуют к границе раздела жидкой и 

газовой фаз, после чего они производят электролюминесценцию в электролюминесцентном 

зазоре. В среднем на один электрон ионизации регистрируется 27 фотоэлектронов в ФЭУ 

верхней матрицы [18]. Триггер, используемый в детекторе РЭД-100 для регистрации УКРН-

подобных сигналов, настроен на поиск скоплений фотоэлектронов в бегущем окне 

длительностью 2 мкс, он срабатывает при достижении порогового значения 57 
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фотоэлектронов [7]. При проведении эксперимента на КАЭС экспериментальная частота 

срабатывания триггера составляла 20 Гц, что свидетельствует о высокой скорости счета 

фоновых УКРН-подобных событий – моделирование показывает, что ожидаемая частота 

сигналов непосредственно от УКРН с более чем 57 фотоэлектронов составляет около 50 

событий в день [7].  

Процедура реконструкции событий в РЭД-100 настроена на поиск 

последовательностей из более чем 5 фотоэлектронов с интервалом между любыми двумя 

последовательными импульсами длительностью не более 500 нс [7, 18]. Процедура является 

эффективной как для сигналов от одиночных свободных электронов, так и для сигналов от 

нескольких электронов ионизации. Измеренная частота сигналов от свободных электронов 

при проведении эксперимента на КАЭС составила 25 кГц [5]. При этом, как было показано в 

работах [5, 11, 15], скорость счета свободных электронов повышается после прохождения 

космического мюона через рабочее вещество детектора, что увеличивает вероятность 

совпадения нескольких сигналов от свободных электронов во времени. Подобные совпадения 

могут имитировать электролюминесценцию от УКРН, поэтому требуется эффективная 

процедура отбора подобных событий. Распределения зарегистрированных фотоэлектронов по 

ФЭУ верхней матрицы должны быть разными для точечных (УКРН) и неточечных (фон от 

SE-совпадений) событий, так как они отражают положения произошедших взаимодействий в 

плоскости xy, параллельной границе раздела фаз. Следовательно, эту информацию можно 

использовать для отбора событий. Ранее была показана эффективность отборов, основанных 

только на геометрии событий [5], а также на классическом машинном обучении [19]. Поэтому 

были предложены более сложные, а вместе с тем потенциально более эффективные решения. 

Разработка процедуры отбора событий на основе нейронных сетей при учете обучения 

“с учителем” требует набора событий с заранее известным типом (точечные или неточечные).  

С целью создания соответствующих наборов данных было проведено детальное 

моделирование сигналов от нескольких электронов ионизации как комбинаций сигналов от 

отдельных свободных электронов. Для этой процедуры были использованы параметры 

сигналов одиночных свободных электронов, а также распределения света по матрице ФЭУ. 

Необходимые параметры были получены в ходе калибровки детектора РЭД-100 на КАЭС [18]. 

Диффузия электронов ионизации во время дрейфа к границе раздела фаз была учтена в 

соответствии с измерениями, описанными в работах [20, 21]. Событие УКРН в данной модели 

состоит из нескольких свободных электронов, исходящих из одной точки, в то время как 

фоновое событие строится из точечных совпадающих по времени событий 1 SE, 2 SE, 3 SE, 

равномерно распределенных по глубине и плоскости xy, и это последнее событие 

представляет собой комбинации вида 1+1, 1+2, 1+1+3, 2+3 и т.д. В рамках данного 
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моделирования для каждого события известны время регистрации каждого фотона и ФЭУ, его 

зарегистрировавший. 

Итоговый набор данных был сбалансирован по типам и содержал примерно 4·10
5
 

событий каждого типа, он был использован для обучения двух нейронных сетей. Детальное 

описание архитектуры нейронных сетей приведено ниже. 

3. ОБУЧЕНИЕ НЕЙРОННЫХ СЕТЕЙ 

Энергетический диапазон для обучения сетей был выбран следующим: от 3 до 6 

электронов ионизации, что совпадает с ожидаемой областью для поиска УКРН [5]. Сеть №1 

использует только распределение света по верхней матрице ФЭУ. Зарегистрированные 

сигналы для каждого события нормализовались таким образом, чтобы их сумма равнялась 

единице. Данная сеть состоит из 19 нейронов во входном слое, соответствующих 19 каналам 

сигнала, 4 скрытых слоев с 70, 64, 72 и 44 нейронами с функцией активации ReLU [22] в 

каждом нейроне и двух слоев пакетной нормализации после первого и последнего скрытых 

слоев. Эта архитектура была получена путем оптимизации с помощью библиотеки KerasTuner 

[23]. Были оптимизированы следующие параметры: количество скрытых слоев, количество 

нейронов в каждом слое, наличие дополнительных слоев после каждого скрытого слоя и 

скорость обучения. 

Сеть №2 является более сложной по сравнению с первой. Она использует временную 

развертку события и работает с трехмерными (x, y, время) 10×10×20 псевдоизображениями 

событий. Насыщенность каждого пикселя рассчитывается как количество фотоэлектронов (N) 

в соответствующем пикселю диапазоне по x, y и времени. Насыщенность каждого пикселя 

была нормализована как (N − Nmean) / Nrms, где Nmean и Nrms рассчитывались с использованием 

распределения значений пикселей в каждом событии. Архитектура этой сети представляет 

собой три сверточных слоя 3×3×5 [24]  и три полносвязных слоя с функцией активации ELU 

[25] и пакетной нормализацией после каждого слоя. Обучение сети №2 требует гораздо 

больше времени, чем обучение сети №1, поэтому шаг оптимизации был пропущен.  

В выходном слое обеих сетей находится только по одному нейрону с сигмоидальной 

функцией активации. Результатом работы каждой сети является вероятность того, что 

событие происходит из точечного источника. Кривые обучения обеих сетей представлены на 

рис. 1. 

Рис. 1. Кривые обучения нейронных сетей. 
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4. ПРОВЕРКА НЕЙРОННЫХ СЕТЕЙ 

Для сравнения результатов работы сетей был использован специально 

сгенерированный проверочный набор данных, состоящий из 5·10
5
 событий и содержащий 

равное количество событий каждого типа. Кроме того, дополнительно была определена 

область интереса как область внутри радиуса 140 мм в плоскости xy с энергией, 

превышающей четыре электрона ионизации [7]. Площадь под ROC-кривой [26] составляет 

0.956 (0.965 в области интереса) для первой сети и 0.959 (0.970 в области интереса) для 

второй. Соответствующие кривые представлены на рис. 2. Двумерные распределения 

результатов работы нейронных сетей, а также соответствующие проекции, показаны на рис. 3. 

Как можно видеть, в проверочном наборе данных присутствует значительное количество 

неточечных событий, которые обе сети распознают как точечные. По большей части эти 

события представляют собой комбинации типа 3 SE + 1 SE или события с очень близко 

расположенными вершинами взаимодействия (с расстоянием между ними порядка размера 

ФЭУ). 

Рис. 2. ROC-кривые нейронных сетей. 

 

Рис. 3. Результат применения нейронных сетей к проверочному набору данных. 

Несмотря на наличие подобных событий, применение отбора на основе двух сетей с 

порогами 0.33 для сети №1 и 0.71 для сети №2 позволяет подавить 92% (93% в области 

интереса) фона, сохраняя при этом 89% (87% в области интереса) сигнала. Пороговые 

значения получены путем максимизации чувствительности к УКРН [7]. 

В качестве дополнительной проверки первая сеть была протестирована на событиях, 

полученных из экспериментальных калибровочных данных. Сигналы от свободных 

электронов из экспериментальных данных были объединены случайным образом для 

формирования неточечных событий, в то время как события из гамма-калибровок [18], 

содержащие только одну вспышку электролюминесценции и одну вспышку сцинтилляции, 

были использованы как точечные события. Результаты данной проверки представлены на рис. 

4 и, как видно, 99% неточечных событий не проходит отбор, в то время как 100% точечных 

проходит. 

Рис. 4. Результат применения сети №1 к событиям, полученным из экспериментальных 

калибровочных данных. 

5. РЕЗУЛЬТАТЫ 

В ходе анализа данных, набранных при выключенном реакторе (OFF-данных), к 

событиям было применено несколько отборов, изложенных в работе [7]. Отбор на основе 

нейронных сетей был применен последним. Он подавляет 65% фона, сохраняя 85% 
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смоделированных сигнальных событий. Процент сохраненных УКРН-событий немного 

отличается от такового, приведенного в предыдущем разделе, так как для проверки сетей 

использовались события из равномерного энергетического распределения, а также к ним не 

были применены все отборы, изложенные в работе [7]. Кроме того, процент подавления фона 

в случае экспериментальных данных оказался существенно ниже, чем то же значение для 

проверочного набора данных. Распределение предсказаний нейронных сетей для 

экспериментальных фоновых событий (см. рис. 5) похоже на распределение для проверочного 

набора данных, однако количество событий, распознанных как точечные, в нем выше. Это 

указывает на то, что фон может состоять из последовательных сигналов от свободных 

электронов, расположенных близко на плоскости xy, возникающих в результате событий с 

большим энерговыделением в рабочем объеме. Тем не менее применение изложенного отбора 

улучшает чувствительность эксперимента РЭД-100 к УКРН примерно в полтора раза. Под 

чувствительностью эксперимента РЭД-100 в данном случае подразумевается медианный 

ожидаемый верхний предел на величину сигнала УКРН, полученный на основе OFF-данных. 

Без применения нейронных сетей он превышает предсказание Стандартной модели примерно 

в 90 раз, в то время как после применения отбора – в 60 раз [7].  

Рис. 5. Результат применения нейронных сетей к модельным УКРН-данным и 

экспериментальным OFF-данным. 

6. ЗАКЛЮЧЕНИЕ 

Отбор на основе двух нейронных сетей был разработан для разделения точечных 

событий УКРН и фона от случайных совпадений сигналов от свободных электронов. Данный 

метод доказал свою эффективность и на только модельных, и на экспериментальных данных. 

Площадь под ROC-кривой в случае проверочного набора данных составляет 0.956 (0.965 в 

области интереса) для сети №1 и 0.959 (0.970 в области интереса) для сети №2. Разработанный 

отбор подавляет до 65% фона в экспериментальных данных, сохраняя 85% сигнала УКРН-

подобных событий, набранных в эксперименте на КАЭС. Изложенный метод позволяет 

повысить чувствительность детектора РЭД-100 к УКРН примерно в 1.5 раза. 
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ПОДПИСИ К РИСУНКАМ 

 

Рис. 1. Кривые обучения нейронных сетей. 

Рис. 2. ROC-кривые нейронных сетей.  

Рис. 3. Результат применения нейронных сетей к проверочному набору данных.  

Рис. 4. Результат применения сети №1 к событиям, полученным из экспериментальных 

калибровочных данных. 

Рис. 5. Результат применения нейронных сетей к модельным УКРН-данным и 

экспериментальным OFF-данным. Красная линия показывает выбранные границы 

отбора. 
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