ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА, 2025, № 3

ТЕХНИКА ЯДЕРНОГО ЭКСПЕРИМЕНТА

УДК 539.1.078

ОПТИМАЛЬНЫЙ МЕТОД ИЗУЧЕНИЯ КОСМИЧЕСКИХ ЛУЧЕЙ ПРИ СВЕРХВЫСОКИХ ЭНЕРГИЯХ

© 2025 г. С. Б. Шаулов^{а,*}

 Физический институт им. П. Н. Лебедева Российской академии наук Россия, 119991, Москва, Ленинский просп., 53
 *e-mail: ser101@inbox.ru Поступила в редакцию 12.12.2024 После переработки 16.01.2025
 Принята к публикации 13.02.2925

Предложен метод определения энергетической зависимости ядерного состава космических лучей путем изучения стволов широких атмосферных ливней с помощью рентгеноэмульсионных камер. Новизна метода заключается в создании специализированной высокогорной установки и алгоритма сопоставления событий в рентгеноэмульсионной камере с широкими атмосферными ливнями. Проблема сопоставления связана с отсутствием временной селекции в рентгеноэмульсионных камерах. Объединение эмульсионых и ливневых событий позволяет создать новый тип высокогорной установки, наиболее чувствительной к энергетической зависимости состава космических лучей. Сопоставление проводится статистически. В рамках предложенного алгоритма получена оценка доли фона в сопоставленных событиях. Метод проверен при анализе событий эксперимента АДРОН на Тянь-Шане. Показано, что фон в статистике сопоставленных событий составляет не более 15%. Проведены две полугодовых и две годовых экспозиции рентгеноэмульсионной камеры площадью 162 м² каждая.

1. ФОРМУЛИРОВКА ЗАДАЧИ

Прямые измерения в космосе показывают, что космические лучи (КЛ) при энергиях ниже 10^{14} эВ представляют собой поток в основном пяти групп ядер: протоны, He, CNO, Si, Fe [1]. Выше этой энергии КЛ изучаются с помощью регистрации широких атмосферных ливней (ШАЛ) в наземных экспериментах на уровне гор и моря. Косвенный метод исследований существенно осложняет получение надежной информации о составе и спектре КЛ. Одной из основных задач таких исследований является определение причины изменения наклона энергетического спектра КЛ при энергии 3 ПэВ ($3 \cdot 10^{15}$ эВ), получившего название "колено" [2]. Резкое изменение наклона энергетического спектра КЛ одной из основных ваклона энергетического спектра КЛ изменение наклона энергетического спектра КЛ *dI/dE*~*E*^{- γ} с γ =2.7 до γ =3.1 остается загадкой на протяжении 65 лет.

Решение проблемы связано с определением ядерного состава КЛ в области колена и зависимости парциальных спектров ядер от первичной энергии *E*₀.

В данной работе формулируется новый метод регистрации и анализа характеристик ШАЛ, который можно рассматривать как оптимальный, так как он позволяет получать

максимальную информацию об индивидуальных характеристиках наиболее энергичных адронов ливня. ШАЛ генерируется первичными ядрами и может быть представлен в виде двух компонент: ядерной (ствол ШАЛ) и электромагнитной (собственно ШАЛ). Схема ШАЛ приведена на рис. 1.

Рис.1. Схема широкого атмосферного ливня.

При анализе важны обе компоненты. Ствол содержит основную информацию о типе первичного ядра, а ШАЛ позволяет оценить его энергию E_0 по числу заряженных частиц (электронов) Ne на уровне наблюдения, например, $E_0=0.018N_e^{0.87}$ ТэВ (1 ТэВ= 10^{12} эВ).

Из всего многообразия детекторов заряженных частиц наибольшую информацию о стволе предоставляют рентгеноэмульсионные камеры (РЭК) [3, 4]. Уникальное пространственное разрешение рентгеновской пленки порядка 100 мкм позволяет регистрировать в РЭК отдельные адроны ствола, определять их энергию и угол прихода. В то же время эмульсионная методика обладает существенным недостатком. Отсутствие временной селекции не позволяет определять первичную энергию Е₀ для ШАЛ, образовавшего данное событие в РЭК. События в РЭК представляют собой семейства частиц с энергиями выше нескольких ТэВ, имеющие одинаковые углы прихода и заключенные в круге радиусом *R*=15 см. Семейства в РЭК накапливаются в течение всей экспозиции, порядка года, поэтому, для того чтобы среди всей статистики ШАЛ, насчитывающей сотни тысяч ливней, найти именно тот ливень, который образовал данное семейство в РЭК, нужно было разработать конструкцию установки и соответствующий алгоритм сопоставления ШАЛ с событиями в РЭК. Задача осложняется тем, что для сопоставления можно использовать лишь два параметра: место попадания событий в установку R_{и.т.} (ц.т. – центр тяжести) для ШАЛ и РЭК и углы их прихода 9, ф. Остальные параметры (N_e , энергии семейств в РЭК ΣE_{γ} и т.п.) использовать нельзя, чтобы избежать искажения их распределений процедурой сопоставления.

2. КОНСТРУКЦИЯ УСТАНОВКИ

Критерий сопоставления создавался для высокогорной установки АДРОН (Тянь-Шань, 3340 м над уровнем моря). Конструкция установки разрабатывалась для получения объединенной информации о ШАЛ, соответствующих данным событиям в РЭК. Схема ее центральной части приведена на рис. 2.

Рис. 2. Центральная часть установки АДРОН.

Заряженные частицы ШАЛ регистрировались системой сцинтилляционных детекторов, расположенных в круге радиусом 70 м. При объединении ШАЛ и РЭК важную роль играют

ионизационные камеры (ИК), образующие толчковую установку (ТУ). Четыре ряда ИК расположены крест-накрест по два ряда под гамма-блоком (G) и адронным-блоком (H) РЭК. Размер ионизационного канала составлял 9.0×0.25×0.05 м³. Ширина канала 25 см и размер семейства в РЭК *R*=15 см были близки.

За исключением добавленных ИК, РЭК в остальном полностью повторяла конструкцию Памирской углеродной камеры [3, 4]. В гамма-блоке регистрировались каскады, генерируемые в свинце гамма-квантами, образованными при распаде π^0 -мезонов ($\pi^0 \rightarrow 2\gamma$). Заряженные пионы $\pi\pm$, взаимодействуя в углеродном конверторе, образовывали π^0 -мезоны, распад которых приводил к регистрации гамма-квантов в адронном блоке. Поэтому наблюдаемая энергия $\pi\pm$ в РЭК составляла величину 0.2 от их реальной энергии.

Подземный мюонный годоскоп состоял из 1720 гейгеровских счетчиков СИ-5Г, расположенных на глубине 20 метров водного эквивалента, он был предназначен для регистрации мюонов с энергиями $E_{\mu} \ge 5$ ГэВ [5].

Установка обеспечивала точность положения оси ШАЛ $\Delta R=0.25$ м и центра тяжести семейства в РЭК $\Delta R=0.01$ м. Точность определения углов в ШАЛ составляла $\Delta \vartheta = 8^{\circ}$, $\Delta \phi = 12.5^{\circ}$; в РЭК – $\Delta \vartheta = 3^{\circ}$, $\Delta \phi = 8^{\circ}$.

3. ПРОЦЕДУРА СОПОСТАВЛЕНИЯ СОБЫТИЙ В РЭК С ШАЛ

Задача сопоставления ШАЛ и РЭК решалась в три этапа: предварительный отбор ШАЛ, отбор ШАЛ по данным ИК в ТУ и отбор по критерию Неймана–Пирсона с использованием взаимных расстояний и углов событий.

Отбор ШАЛ, попавших в область РЭК, на первом этапе оставлял около 5% событий из примерно 200000 ШАЛ. Дальнейший отбор велся с учетом положения оси ШАЛ в ТУ относительно события в РЭК и величины создаваемого им ионизационного толчка. При этом с увеличением энергии семейства частиц в РЭК ΣE_{γ} от 10 до примерно 100 ТэВ оставалось от 25 до 1 кандидата на сопоставление с данным событием в РЭК. Далее отбор истинного ШАЛ проводился по критерию Неймана–Пирсона.

3.1. Отбор событий в РЭК

События в РЭК представляют собой генетически связанные семейства каскадов, образованных в свинце гамма-квантами энергий в диапазоне ТэВ, возникших в результате распада π^0 мезонов. В РЭК отбирались события с суммарной энергией $\Sigma E_{\gamma} \ge 10$ ТэВ.

3.2. Предварительный отбор ШАЛ

В установке АДРОН использовались два типа мастер-импульсов (триггеров) отбора событий для записи их в банк данных: ливневой и толчковый. Ливневой триггер отбирал около 200000 ШАЛ/год в радиусе около 70 метров. Чтобы выбрать ливни, попавшие в РЭК, был установлен дополнительный триггер, формировавшийся с помощью импульсов ИК. В толчковой установке (ТУ) для каждой ИК устанавливалось пороговое условие, при превышении которого вырабатывался общий триггер на запись данного кадра в банк данных. Пороговые значения в рядах ИК 1-4 (сверху вниз) соответствовали числу релятивистских частиц $1.3 \cdot 10^4$, $9.8 \cdot 10^3$, $5.9 \cdot 10^3$ и $4.7 \cdot 10^3$. В пересчете на энергию для уровня РЭК это соответствовало менее, чем 2 ТэВ, на всю площадь канала (2.25 м^2), что не могло ограничивать отбор кандидатов для сопоставления. Отбор оставлял около 5% всех событий.

3.3. Отбор ШАЛ по характеристикам ТУ

Положение оси ШАЛ определяется ИК с максимальным значением импульса. Ширина ионизационного канала составляла 0.25 м, поэтому при поиске ШАЛ, соответствующего данному событию в РЭК, все ливни с осями вне квадрата 0.37×0.37 м² исключались.

Дальнейший отбор ШАЛ проводился с помощью введения понятия "локализованного толчка", которое представляет собой поток энергии (числа частиц) в стволе ливня в области с размерами, сравнимыми с шириной канала (равной 0.25 м). Учитывая быстрое уменьшение числа частиц вблизи максимума ФПР ТУ, эту величину приближенно можно получить, вычитая ионизацию соседнего канала из ионизации канала с максимальным ее значением. Учитывая возможное совпадение максимумов в двух соседних каналах, выражение для локальных толчков (ЛТ), можно записать в следующем виде:

$$E_{J.T.} = \max \begin{cases} [N_{max} + 0.5(N_{max+1} + N_{max-1})] \cdot 2 \cdot 10^{-4} \text{ T} \Rightarrow B\\ [N_{max} + N_{max+1} - N_{max-1} - N_{max+2}] \cdot 10^{-4} \text{ T} \Rightarrow B\\ [N_{max} + N_{max}^{-1} - N_{max}^{-2} - N_{max}^{+1}] \cdot 10^{-4} \text{ T} \Rightarrow B \end{cases}$$
(1)

Здесь считается, что средняя энергия электронов на уровне ИК G-блока составляет 0.2 ГэВ [6]. Исключение ШАЛ по величине локализованных толчков зависело от энергии семейств, и критерий отбора был выбран достаточно мягким:

$$E_{\rm JT} \leq 0.5 \ \Sigma E_{\gamma}. \tag{2}$$

Здесь ЛТ отбирается в квадрате 0.25×0.25 м². Как показал анализ сопоставленных событий, исключение ШАЛ с ЛТ по этому критерию не вносит ограничений в процедуру сопоставления.

3.4.Сопоставление событий в РЭК с ШАЛ

Энергия семйств в РЭК меняется от 10 до нескольких сотен ТэВ. Для

порогового значения ΣE_{γ} число оставшихся кандидатов ШАЛ может составлять до 25 ШАЛ на одно событие в РЭК. Однако с ростом ΣE_{γ} их число уменьшается вплоть до одного события. В дальнейшем при анализе характеристик событий в зависимости от N_e (E_0) в интервалы ΔN_e попадают события с разной величиной ΣE_{γ} , так кака корреляция между N_e и ΣE_{γ} довольно слабая. Сопоставление проводится путем сравнения положения оси ШАЛ с центром тяжести семейства РЭК и их углов прихода. Распределение ошибок для углов ϑ , φ имеет негауссову форму ($\varphi=0^\circ$ и $\varphi=360^\circ$ совпадают). Поэтому вместо углов ϑ и φ используются углы ϑ_x и ϑ_y , возникающие при проекции оси ШАЛ на плоскости $xz-\vartheta_x$ и $yz-\vartheta_y$ в декартовой системе координат с началом пересечения осью ШАЛ плоскости РЭК.

4. ЭФФЕКТИВНОСТЬ И СТАБИЛЬНОСТЬ РАБОТЫ УСТАНОВКИ

Наличие РЭК предполагает высокогорное расположение установки (Тянь-Шань, 3340 м над уровнем моря). С увеличением глубины в атмосфере возрастает диссипация энергии вторичных адронов, и они уходят под порог регистрации РЭК, поэтому чем выше расположена установка такого типа, тем эффективнее ее работа.

Кроме того, с учетом активности РЭК в течение всего времени экспозиции для сопоставления событий важным является требование непрерывной и стабильной работы установки ШАЛ в течение всего календарного времени. Обычная доля времени эксплуатации высокогорной установки ШАЛ,с учетом повреждений аппаратуры грозами и ее ремонта, профилактики, нарушений электропитания и др., составляла около 60%. Это заведомо недостаточно для решения задачи сопоставления событий. Для увеличения времени стабильной работы установки был предпринят ряд мер.

4.1. Обеспечение аппаратной стабильности работы установки

Во всех подсистемах широко использовалось дублирование аппаратуры. Полностью были продублированы система регистрации и сменные модули поканальной электроники детекторов, что обеспечивало их быструю замену в случае выхода из строя.

Для исключения грозовых наводок в длинных кабелях ставились оптические развязки –оптроны.

Работа всех подсистем была организована стандартным образом. При рассылке триггера входы всех подсистем блокировались и пришедшие с них импульсы записывались в буферную память. При последовательном опросе информация переносилась в ЭВМ, где формировался кадр, содержащий информацию обо всех детекторах, который заносился в банк данных.

5. КОНТРОЛЬ РАБОТЫ УСТАНОВКИ

5

Контроль за работой установки имел несколько уровней:

 – при каждом срабатывании установки на экран дисплея выводилась информация обо всех детекторах;

 в каждой подсистеме имелись каналы с постоянными значениями сигналов (так называемые векторы), по которым контролировалась правильность считывания информации;

 – на каждом кадре проводился контроль аппаратной готовности подсистем и правильности прохождения циклов опроса;

- накопление сбоев приводило к включению сигнализации;

 – особый уровень контроля работы подсистем включал их тестирование путем подачи на вход стандартных импульсов (например, "шахматной доски") с последующим чтением и контролем;

– основной контроль за стабильностью работы подсистем проводился с помощью ежедневного анализа физических спектров срабатывания всех каналов того или иного типа в течение сеанса (порядка 1000 событий). Выделенные каналы считались нерабочими, они не использовались в анализе и подлежали замене;

 на протяжение всех лет эксплуатации установки велось круглосуточное дежурство научно-инженерного персонала станции;

принятые меры позволили увеличить эффективность работы установки ШАЛ с 60% до 90% календарного времени.

6. ФОРМУЛИРОВКА КРИТЕРИЯ НЕЙМАНА-ПИРСОНА

Для каждого события в РЭК необходимо найти всех возможных партнеров среди ШАЛ и выбрать партнера с максимальным значением критерия отбора. В теории принятия решений отмечается, что среди возможных критериев наименьшую ошибку сопоставления обеспечивает критерий Неймана–Пирсона [6]. Для его реализации необходимо вычислять вероятность истинной и ложной комбинаций событий.

Введем две гипотезы: пусть гипотеза H_0 означает, что данная пара ШАЛ_{*i*}РЭК_{*j*} ложная, а гипотеза H_1 , – что эта пара истинная. Критерий Неймана–Пирсона формулируется в виде следующей проверочной статистики $l(\bar{x}, H_0, H_1)$:

$$l(\bar{x}, H_0, H_1) = \frac{P(\bar{x}, H_1)}{P(\bar{x}, H_0)} \ge C_{\alpha}.$$
(3)

Если $l(\bar{x}, H_0, H_1) \ge C_{\alpha}$. то верна гипотеза H_1 , т.е. ШАЛ_{*i*}РЭК_{*j*} соответствуют друг другу. Если $l(\bar{x}, H_0, H_1) < C_{\alpha}$, то верна гипотеза H_0 . При постоянном значении C_{α} условие $l(\bar{x}, H_0, H_1) \ge$ C_{α} может выполняться для нескольких ШАЛ_{*i*}, так как в зависимости от величины ΣE_{γ} число кандидатов меняется. В этом случае среди них выбирался ливень с максимальным значением проверочной статистики l_i .

В результате указанной процедуры каждому событию в РЭК с $\Sigma E_{\gamma} \ge 10$ ТэВ ставится в соответствие ШАЛ. Объединенные события характеризуются как ливневыми параметрами, такими как число электронов $N_e(E_0)$, число мюонов N_{μ} , возраст ливня *s* и т.п., так и параметрами стволов ШАЛ, такими как множественность вторичных адронов, их энергетические спектры и многими другими параметрами, представляемыми событиями в РЭК [3].

Учитывая, что для каждого параметра сопоставления критерий имеет вид (3), можно записать общее выражение для условия отбора ШАЛ_{*i*}:

$$l^{j}=\max(l^{ij}_{\vartheta x}, l^{ij}_{\vartheta y}, l^{ij}_{R})|_{i=1}^{n} \ge C_{\alpha}.$$
(4)

Прежде чем выписывать конкретный вид этого условия, рассмотрим, как оно формируется для произвольного угла 9. Обозначим угол, измеренный хронотроном в ШАЛ, как $\vartheta_h = \vartheta_1$, и угол, измеренный в РЭК, как $\vartheta_e = \vartheta_2$.

Если справедлива гипотеза H_0 , то ϑ_1 и ϑ_2 независимы. Обозначим эту пару как $\theta = (\vartheta_1, \vartheta_2)$. Тогда в этом случае вероятность иметь пару измерений дается выражением

$$P(\theta, H_0) = P_{\rm h}(\vartheta_1) P_{\rm e}(\vartheta_2), \tag{5}$$

где *P*_h и *P*_e – распределения плотности вероятности для углов ШАЛ и РЭК соответственно.

Если же справедлива гипотеза H_1 , то существует истинное значение $\vartheta=\vartheta_t$, но в силу экспериментальных ошибок для ШАЛ имеем $\vartheta=\vartheta_1$, а для РЭК – $\vartheta=\vartheta_2$. В этом случае

$$P(\theta, H_1) = P(\vartheta_t)P(\theta|\vartheta_t).$$
(6)

Значение θ_t неизвестно, но в качестве его оценки может быть взято взвешенное среднее двух независимых измерений θ [7]:

$$\vartheta_{t} \approx \frac{\vartheta_{1}\sigma_{2}^{2} + \vartheta_{2}\sigma_{1}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}.$$
(7)

В этом случае

$$P(\vartheta_{t}, H_{1}) = P(\vartheta_{t}) \frac{1}{2\pi\sigma_{1}\sigma_{2}} \exp\left(-\frac{\Delta\vartheta}{2(\sigma_{1}^{2} + \sigma_{2}^{2})}\right), \tag{8}$$

где $\Delta \vartheta = \vartheta_2 - \vartheta_1$, а σ_1 и σ_2 — соответствующие ошибки определения углов. Тогда условие выполнения H_1 выглядит следующим образом:

$$l(\vartheta_{t}, H_{0}, H_{1}) = \frac{P(\theta, H_{1})}{P(\theta, H_{0})} = \frac{P(\vartheta_{t})}{P_{h}(\vartheta_{1})P_{e}(\vartheta_{2})} \frac{1}{2\pi\sigma_{1}\sigma_{2}} \exp\left(-\frac{\Delta\vartheta}{2(\sigma_{1}^{2}+\sigma_{2}^{2})}\right) \geq C_{\alpha}.$$
 (9)

Аналогичным образом определяются проверочные статистики для всех параметров в *x*:

$$l^{ij}_{\theta^{y}} = \frac{P(\vartheta^{x})}{P_{h}(\vartheta^{x}_{1})P_{e}(\vartheta^{x}_{2})} \frac{1}{2\pi\sigma_{1}\sigma_{2}} \exp\left(-\frac{\Delta\vartheta^{x}}{2(\sigma_{1}^{2}+\sigma_{2}^{2})}\right),$$

$$l^{ij}_{\theta^{y}} = \frac{P(\vartheta^{y})}{P_{h}(\vartheta_{1}^{y})P_{e}(\vartheta_{2}^{y})} \frac{1}{2\pi\sigma_{1}\sigma_{2}} \exp\left(-\frac{\Delta\vartheta^{y}}{2(\sigma^{12}+\sigma^{22})}\right),$$

$$l^{ij}_{R} = \frac{S_{0}}{\Delta S} \frac{1}{2\pi\sigma_{1}\sigma_{2}} \exp\left(-\frac{\Delta R}{2(\sigma_{1}^{2}+\sigma_{2}^{2})}\right),$$
(10)

где $S_0=162 \text{ м}^2$ – площадь установки, $\Delta S=0.25 \times 0.25 \text{ м}^2$ – пространственное разрешение толчковой установки, ΔR – расстояние межу центром семейства в РЭК и центром тяжести в ТУ. Окончательно для *j*-го семейства в РЭК выбирается ШАЛ_{*i*}, для которого наибольшее значение приобретает произведение всех проверочных статистик:

$$l_{j} = \max[(l^{ij}_{9^{\times}} l^{ij}_{9^{\vee}} l^{ij}_{R})|_{i=1} \ge C_{\alpha}].$$
(10)

Коэффициент C_{α} подбирается экспериментально из соображений допустимой доли фона и эффективности сопоставления. Его конкретное значение большого значения не имеет, так как в каждом конкретном случае выбирается пара событий, имеющая максимальное значение критерия отбора. На этом процедура сопоставления заканчивается.

7. ОЦЕНКА ДОЛИ ФОНА

Перерывы в работе электроники являются одним из основных факторов, приводящих к возникновению фона (η – эффективность работы электроники). Однако фон присутствует даже при η=1 из-за статистического метода сопоставления событий. Причина заключается в возможном случайном вытеснении истинного ШАЛ фоновым.

Для определения реальной доли фона в сопоставленных событиях есть простой прием. Если изменить все координаты событий в РЭК и повторить процедуру сопоставления, то для данной статистики событий будет получено распределение фона. В результате был получен спектр

фоновых событий, приведенный на рис. 3 вместе с истинным спектром, включающим также фоновые события.

Рис. 3. Экспериментальный и фоновый спектры событий в РЭК с $\Sigma E_{\gamma} \ge 10$ ТэВ

Для событий с искаженными координатами эффективность сопоставления уменьшилась примерно в шесть раз, т.е. фон составляет 15%. Кроме того, фоновый спектр более гладкий. Его вычитание из экспериментального спектра незначительно поменяет интенсивность, и это не должно приводить к искажению формы спектра.

8. ЗАКЛЮЧЕНИЕ

Предложен и опробован новый метод изучения космических лучей в области колена в спектре широких атмосферных ливней. Формулировке объединенного метода ШАЛ+РЭК в 80-е годы предшествовали детальное развитие метода ШАЛ в 60-е годы на Тянь-Шане [5] и метода РЭК в 70-е годы на Памире [3]. Поэтому формулировка объединенного метода явилась естественным продолжением указанных работ.

Проверка рассмотренного метода в рамках эксперимента АДРОН показала, что новая установка, объединяющая ливневую часть для регистрации ШАЛ и РЭК в качестве детектора стволов ШАЛ, значительно увеличивает информативность исследований и позволяет получать уникальные данные, ранее не доступные в экспериментах другого типа. Как это следует из работ [8, 9], новый тип установки позволяет существенно продвинуться в понимании природы колена в спектре ШАЛ. Ниже представлены характеристики установки нового типа ШАЛ+ГАММА (ШАГ).

- Для оценки первичной энергии E₀ ливневая часть установки регистрировала полное число заряженных частиц N_e в ШАЛ, которое по модельным формулам переводилось в первичную энергию E₀.
- Использование ИК увеличивало точность определения оси ШАЛ с 2 м до 0.25 м, что позволило уменьшить число кандидатов ШАЛ, соответствующих данному событию в РЭК.
- Для уменьшения доли фона, т.е. неправильно сопоставленных событий, эффективность работы установки ШАЛ была увеличена с 60 до 90% календарного времени на протяжении экспозиции длиной порядка года.
- За счет пространственного разрешения около 100 мкм при площади в сотни квадратных метров РЭК позволяет определять энергии, углы прихода и координаты индивидуальных каскадов, образованных гамма-квантами в свинце. Это максимально

доступная информация о структуре стволов ШАЛ, что делает РЭК уникальным и незаменимым прибором для определения характеристик первичных частиц в КЛ.

- 5. Необходимую статистику событий обеспечивала РЭК площадью в 162 м², экспонировавшаяся тремя экспозициями в течении двух лет.
- Установка экспонировалась на уровне гор, так как высокий энергетический порог регистрации каскадов на пленке (несколько ТэВ) делает использование РЭК на уровне моря неэффективным.
- 7. Для отбора ШАЛ, соответствующего данному событию в РЭК, использовался критерий Неймана–Пирсона для двух параметров: положения оси ШАЛ относительно центра тяжести семейства в РЭК и углов прихода ШАЛ и события в РЭК.
- 8. Отбор ШАЛ с осями в РЭК осуществлялся специальным триггером, использующем данные ИК.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гинзбург В.Л., Сыроватский С.И. Происхождение космических лучей. Москва: Изд. АН СССР, 1963.
- 2. Куликов Г. В., Христиансен Г. Б.// ЖЭТФ. 1958. V.35 3(9). Р. 635.
- 3. С.Г. Байбурина А.С. Борисов, ЗМ. Гусева и др. Труды ФИАН. 1984. Т. 154. С. 3.
- Baradzei L.T. et al. Chacaltaya and Pamir Collaboration. Nuclear Phys. B. 1992. V. 370. P. 365.
- Стаменов Й.Н, Георгиев Н.Х., Кабанова Н.В. и др. Труды ФИАН& 1979. Т. 109. С. 132.
- 6. Адамов Д.С. Дисс... канд. физ.-мат. наук. Москва: ФИАН, 1990.
- 7. *Идье В., Драйард Д., Джеймс Ф., Рус М., Садуле Б.,* Статистические методы в экспериментальной физике. Москва: Атомиздат, 1976.
- Shaulov S. B., Kupriyanova E. A., Ryabov V.A. et al, J. Phys. G: Nucl. Part. Phys. 2021. V.
 48. P. 125202. https://doi.org/10.1088/1361-6471/ac2e58
- 9. Шаулов С.Б., Рябов В.А., Щепетов А.Л. и др. Письма в ЖЭТФ. 2022. Т. 116. С. 3.

ПОДПИСИ К РИСУНКАМ

Рис.1. Схема широкого атмосферного ливня.

Рис. 2. Центральная часть установки АДРОН: сверху вниз: ливневая часть (сцинтилляторы); G-block (блок свинца толщиной 6 см для генерации гамма-квантами электромагнитных каскадов, создающих пятна потемнения на рентгеновской пленке, по характеристикам которых определялась энергия гамма-кванта от распада π^0); два ряда ионизационных камер крестнакрест; слой резины толщиной 60 см, служивший конвертером π^{\pm} -мезонов в π^0 , H-block (блок свинца толщиной 5 см для регистрации гамма-квантов от распада π^0 , образованных в конвертере π^{\pm} -мезонами), два ряда ионизационных камер крест-накрест, подземный мюонный годоскоп гейгеровских счетчиков.

Рис. 3. Экспериментальный и фоновый спектры событий в РЭК с $\Sigma E_{\gamma} \ge 10$ ТэВ.

Рис.1.

Рис. 2.

Рис. 3.