ТЕХНИКА ЯДЕРНОГО ЭКСПЕРИМЕНТА

УДК 621.039.34

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ДЛЯ ОБОСНОВАНИЯ СОЗДАНИЯ ИЗОТОПНОГО ГЕНЕРАТОРА¹⁰³Ru/^{103m}Rh

©2025 г. В. А. Загрядский^{*a*}, К. О. Королев^{*a*}, Я. М. Кравец^{*a*}, А. В. Курочкин^{*a*}, А. Н. Стрепетов^{*a*}, Т. А. Удалова^{*a*,*}

^аНациональный исследовательский центр "Курчатовский институт" Россия, 123182, Москва, пл. Академика Курчатова, 1 *e-mail: udalova ta@nrcki.ru

> Поступила в редакцию 27.11.2024 г. После доработки 11.02.2025 г. Принята к публикации 25.02.2025 г.

Для разработки изотопного генератора ¹⁰³Ru/^{103m}Rh проводилось реакторное получение и идентификации радиоизотопа ¹⁰³Ru. Отработаны методики синтеза и дистилляции высоколетучего RuO₄ из металлического рутения и из растворов, продемонстрирован эффект очистки RuO₄ от сопутствующих радионуклидных примесей при дистилляции. Впервые продемонстрирована возможность разделения рутения и целевого радиоизотопа ¹⁰³mRh методом термической отгонки RuO₄.

1. ВВЕДЕНИЕ

В настоящее время и в нашей стране, и за рубежом большое внимание уделяется разработкам и внедрению таргетных терапевтических препаратов, основанных на использовании оже-эмиттеров и конверсионных электронов в качестве терапевтических агентов, позволяющих уничтожать раковые клетки, минимизируя побочные радиологические эффекты. Оже-эмиттеры и конверсионные электроны имеют малый пробег и высокую удельную линейную потерю энергии, они способны повреждать раковые клетки в пределах нескольких десятков микрон, но не оказывают цитотоксического действия на больших расстояниях, не повреждая здоровые клетки и ткани. Радиоизотоп ^{103m}Rh по праву относится к наиболее эффективным, безопасным и удобным для практического применения оже-

эмиттерам и конверсионных электронов [1–3]. У него наименьшее отношение числа γ -квантов к числу электронов, и он может быть получен генераторным способом. Предшественниками ^{103m}Rh ($T_{1/2} = 56.1$ мин) в генераторе могут быть ¹⁰³Ru ($T_{1/2} = 39.25$ сут.) или ¹⁰³Pd ($T_{1/2} = 16.99$ сут.). Использование в качестве предшественника ¹⁰³Ru более предпочтительно в связи с большим периодом полураспада и возможностью в качестве стартового материала при его наработке по реакции ¹⁰²R(n, γ)¹⁰³Ru использовать природный рутений, в котором содержание изотопа ¹⁰²Ru составляет 31.6%, в то время как при наработке ¹⁰³Pd по реакции ¹⁰²Pd(n, γ)¹⁰³Pd необходимо использовать высокообогащенный изотоп ¹⁰²Pd, содержание которого в природной смеси изотопов не превышает 1%. Рисунок 1 иллюстрирует цепочку генераторного получения и последующего распада радиоизотопа ^{103m}Rh с предшественником ¹⁰³Ru.

Рис. 1.Схема наработки и изомерного перехода целевого радиоизотопа ^{103m}Rh

Учитывая изложенное выше, задача создания изотопного генератора ¹⁰³Ru/^{103m}Rh представляется весьма актуальной. В настоящей статье описана техника реакторного получения и идентификации радиоизотопа ¹⁰³Ru, отработаны методики синтеза и дистилляции высоколетучего RuO₄ из металлического рутения и из растворов, продемонстрирован эффект очистки RuO₄ от сопутствующих радионуклидных примесей при дистилляции. Продемонстрирована возможность разделения рутения и целевого радиоизотопа ^{103m}Rh методом термической отгонки RuO₄.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1. Получение радиоизотопа 103 Ru и идентификация 103 Ru и 103m Rh

Для получения радиоактивного ¹⁰³Ru порошок губчатого металлического рутения массой 46 мг природного состава облучался в течение суток потоком тепловых нейтронов с мощностью порядка 5 МВт в горизонтальном экспериментальном канале реактора ИР-8 НИЦ "Курчатовский институт". Гамма- и рентгеновские спектры облученного образца были получены с помощью соответствующих спектрометров: гамма-спектрометра ORTEC GEM 35Р4 и рентгеновского спектрометра фирмы ORTEC GLP 25325/10 (США) с детекторами из сверхчистого германия. Активность ¹⁰³Ru определялась по измерениям наиболее интенсивной гамма-линии ¹⁰³Ru с энергией E_{γ} =497 кэВ на γ -детекторе ORTEC. Фрагменты инструментальных гамма-спектров облученного образца рутения через четыре месяца после облучения и синтезированного из него RuO4 представлены на рис. 2.

Рис. 2.Фрагменты аппаратурных гамма-спектров ¹⁰³Ru...

После осуществления конверсии облученного Ru в сконденсированный кристаллический RuO₄ линии примесного ¹⁹²Ir в гамма-спектре не наблюдались.

Поскольку целевой изотоп ^{103m}Rh не имеет линий в гамма-диапазоне, измерение его активности проводилось с помощью X-ray спектрометра ORTEC в области энергий 20.15 кэB, где рентгеновские линии ¹⁰³Ru и ^{103m}Rh перекрываются. При установившемся в системе равновесии вклады от ¹⁰³Ru и ^{103m}Rh в перекрывающийся пик полного поглощения в области энергий 20 кэB определялись по измеренному суммарному пику в долях пропорционально их квантовым выходам. Квантовые выходы ¹⁰³Ru и ^{103m}Rh в области энергий 20 кэB составляют 7.22% и 6.27% соответственно [4].

2.2. Синтез RuO₄ из металлического Ru

Методику конверсии металлического Ru в RuO₄ разрабатывали на необлученных промышленных образцах губчатого рутения.

Ожидаемые преимущества разрабатываемого генератора состоят в простоте эксплуатации, большом сроке работы без дозаправки и автоматической очистке рутения от радионуклидных примесей, которые нарабатываются при облучении, но не переходят в газовую фазу при конверсии Ru в RuO₄.

Оксид рутения RuO₄(VIII) – неорганическое соединение в виде желто-оранжевых кристаллов, умеренно растворимых в воде и образующих гидраты [5]. По измерениям зависимости P(T) четырехокиси рутения [6] давление насыщенного пара составляет 8.6 мм рт. ст. при температуре 22°C. Разложение RuO₄ происходит при контакте с влагой при повышенных температурах и под воздействием света.

В работах [7, 8] наиболее совершенным методом синтеза RuO₄ названа отгонка четырехокиси рутения из сернокислой среды с периодатом калия KIO₄ в качестве окислителя.

Обобщенно эта реакция представляется уравнением

$$Ru + 4KIO_4 \rightarrow RuO_4 \uparrow + 4KIO_3.$$
 (1)

Однако с заметным выходом она может быть осуществлена только в несколько стадий, включающих предварительное окисление Ru в растворе щелочи до RuO4²⁻ и последующую дистилляцию RuO4 из раствора выдуванием его нейтральным газом.

2.2.1. Конверсия металлического Ru в растворимую соль K₂RuO₄. Первым этапом превращения металлического Ru в RuO₄ является перевод Ru в растворимую форму рутената калия K₂RuO₄.

Для этой цели было опробовано два способа.

 Синтез К₂RuO₄ из исходного Ru окислением его в расплаве КОН и KNO₃ при температуре 400-500°С по следующей реакции:

$$Ru + 2KOH + 3KNO_3 = K_2 RuO_4 + 3KNO_2 + H_2O.$$
 (2)

2. Синтез K₂RuO₄ окислением Ru непосредственно в растворе KOH по следующим реакциям :

$$Ru + 3KIO_4 + 2KOH = K_2 RuO_4 + 3KIO_3 + H_2O,$$
 (3)

$$Ru+4K_{2}S_{2}O_{8}+2KOH=K_{2}RuO_{4}+4K_{2}S_{2}O_{7}+H_{2}O+0.5O_{2}$$
(4)

Для контроля K₂RuO₄ в растворах, синтезируемого по реакциям (2)–(4), проводились измерения спектров поглощения в диапазон длин волн 220–1000 нм на приборе SPECTROstar©Nano (производство Германия). Необходимые данные по коэффициентам экстинции были взяты из обстоятельной работы [9] по спектроскопии растворов рутения, согласно которым ион RuO4²⁻ (Ru(VI)) при λ =465нм имеет коэффициент экстинкции ε =1820 л·моль^{-1.}см⁻¹ (рис. 3), а молекула RuO4, Ru(VIII) при λ =385нм – ε =930 л·моль^{-1.}см⁻¹.

Количественные измерения K₂RuO₄ в получаемых растворах проводили следующим образом. Из синтезированного раствора отбирались дозированные пробы объемом несколько микролитров, которые вводились в оптическую кварцевую кювету с нейтральным растворителем (дистиллятом или KOH), после чего по измеряемой оптической плотности τ при длине волны λ =465 нм и известному для иона RuO4²⁻ коэффициенту экстинкции ε (рис. 3) рассчитывалась масса растворенного K₂RuO₄ и массу Ru по формуле

$$m_{\rm Ru(VI)} = \frac{V_{\rm KibB} \cdot V_{\rm pactB}}{V_{\rm npo6} \cdot L_{\rm pactB}} \cdot \frac{\tau_{465}}{\varepsilon_{465}} \cdot \mu_{\rm Ru},$$
(5)

где $m_{\text{Ru(VI)}} [\text{MF}]$ – масса Ru(VI) в исследуемом растворе; $V_{\text{кюв}} [\pi]$ – объем оптической кюветы; $V_{\text{раств}} [\pi]$ – объем исследуемого раствора, из которого взята проба; $V_{\text{проб}} [\pi]$ – объем пробы; $L_{\text{раств}} [\text{см}]$ – толщина слоя раствора в оптической кювете; τ_{465} [отн. ед.] – измеренная оптическая плотность; $\varepsilon_{465} [\pi \cdot \text{моль}^{-1} \cdot \text{см}^{-1}]$ – коэффициент экстинкции аниона RuO₄-²; $\mu_{\text{Ru}} [\text{a.e.m.}]$ – атомный вес Ru.

Контроль получаемых растворов в течение продолжительного времени показал, что концентрация K₂RuO₄ в щелочных растворах молярностью более 2M остается стабильной не менее двух недель.

Рис. 3. Молярный коэффициент экстинкции иона RuO4²⁻ (Ru(VI)) как функция длины волны...

Реакция (2). Синтез рутената калия по реакции (2) в расплаве удовлетворительно воспроизводился по известной методике [10], и спектр его раствора соответствовал

литературным данным. Согласно спектрофотометрическим измерениям, выход K₂RuO₄ составил 80%.

Реакция (3). Синтез K_2RuO_4 в растворе по реакции (3) проводился в стеклянном бюксе, помещенном в нагреваемый термостат, в интервале температур 70–90°С в течение двух часов при непрерывном перемешивании с помощью магнитной мешалки. Как было установлено по спектрам поглощения, в получаемых растворах образовывалась рассеивающая мелкодисперсная взвесь, по-видимому KIO₃, которую не удавалось устранить даже с помощью центрифуги на частоте 10^4 об/мин. Это приводило к искажению формы спектров K₂RuO₄ и невозможности определять по ним концентрацию.

Реакция (4). Для синтеза K_2RuO_4 в растворе по реакции (4) был опробован другой окислитель Ru – пероксидисульфат калия $K_2S_2O_8$, растворимость которого в воде при температуре 20°C составляет 4.49 г/100 мл, в то время как растворимость KIO_4 – лишь 0.42 г/100 мл. По литературным данным температура разложения $K_2S_2O_8$ составляет менее100°C, поэтому при проведении реакции окисления Ru персульфатом калия температура нагрева была понижена. Синтез проводился в таком же стеклянном бюксе в течение 2 часов при температуре 55–60 °C при непрерывном перемешивании. В этих условиях удалось получить полноценные спектры K_2RuO_4 и путем варьирования относительных количеств реагентов подобрать условия максимального выхода Ru в раствор, который составил в итоге 78%.

Несмотря на столь же высокий выход K₂RuO₄ по реакции (2), получение K₂RuO₄ по реакции (4) оказалось более удобным, так как для проведения реакции (2) в расплаве требуются достаточно длительные манипуляции с радиоактивным порошком Ru (перемешивание с KNO₃, поэтапное добавление этой смеси в расплав KOH и последующее ее растворение).

2.2.2. Синтез и дистилляция RuO₄ из раствора. Для реализации подхода, включающего отгонку RuO₄ из раствора, был собран специальный стенд (рис. 4). Приведенная в работах [7, 8] схема газового стенда для наработки RuO₄ не отвечала требованиям нашей задачи. Прежде всего, разборный стеклянный газовый стенд не обеспечивал достаточную герметичность без применения вакуумной смазки (активно взаимодействующей с RuO₄), а также не позволял провести высокое обезвоживание осушителя газов ангидрона Mg(ClO₄)₂. Поэтому при изготовлении стенда использовались детали, выполненные из нержавеющей стали и дюралюминия. В качестве соединяющих элементов между стеклом и металлом в первых экспериментах применялись трубки из полиэтилена и полипропилена. Однако из-за взаимодействия RuO₄ с внутренними поверхностями таких трубок (что проявлялось в их почернении), они были заменены на трубки из фторопласта ПТФЭ. Стеклянной оставалась только перегонная "трехгорлая" колба l (рис. 4), шлифы которой смазывались серной кислотой. Реакционная смесь в колбе непрерывно перемешивалась магнитной мешалкой, якорь которой имел защитное покрытие из фторопласта. Ловушки 2, 3, 4 (рис. 4) были снабжены вентилями из нержавеющей стали. В качестве охлаждающей смеси использовался жидкий этилцеллозольв (C₄H₁₀O₂), который поддерживался при температуре -78° С путем периодического подливания жидкого азота. Перенос RuO₄ из реакционной колбы в ловушки-сборники осуществлялся потоком азота высокой чистоты из стандартного баллона объемом 40 л, расход задавался регулятором расхода РРГ-10. Использование магнитной мешалки позволило отказаться от погружения подводящей газ трубки непосредственно в реакционную смесь во избежание потерь Ru из-за разбрызгивания раствора и осаждения капель на стенках колбы.

Рис. 4. Схема газового стенда для синтеза и дистилляции RuO₄...

Процесс наработки и дистилляции RuO₄ проводился при комнатной температуре и состоял в следующем:

- в перегонную колбу помещался порошок KIO₄ в количестве1–1.5 г.

– с помощью регулятора устанавливался расход азота (q = 10 л/ч).

- в колбу вливался раствор K₂RuO₄ в КОН (молярностью 4М) объемом12–17.0 мл.

- капельное добавление концентрированной H₂SO₄ в раствор из делительной воронки.

Длительность эксперимента по наработке и отгонке RuO₄ не превышала двух часов. По мере увеличения концентрации H₂SO₄ цвет раствора и порошка KIO₄ на дне колбы из краснокоричневого становился желтым и постепенно бледнел к концу второго часа вплоть до полного обесцвечивания. Отгоняемый RuO₄ пропускался через осушитель 2 (рис. 4) и конденсировался в металлической ловушке-сборнике 3 (рис. 4), которая по окончании процесса переносилась на вакуумный стенд (рис. 5).

Рис.5. Схема вакуумного стенда для операций по выделению ^{103m}Rh

После завершения отработки методики конверсии Ru в RuO₄ на необлученном металлическом рутении целевые операции – последовательные превращения Ru в K₂RuO₄ и K₂RuO₄ в RuO₄ – проводились на облученных образцах.

2.3. Выделение 103m Rh при отгонке RuO₄

Вакуумный стенд, схема которого представлена на рис.5, предназначен для перегонки синтезированного RuO₄ в небольшие пригодные для хранения емкости, для оценки количества

собранного RuO₄ и, прежде всего, для выделения нарабатываемого ^{103m}Rh. Извлечение ^{103m}Rh проводилось путем его смыва со стенок кварцевых ловушек после выдерживания в них ¹⁰³RuO₄ и последующей его отгонки.

Емкости для операций с RuO₄ представляли собой ампулы из плавленого кварца 2, 3 (рис.5) с внутренним диаметром 10 мм и длиной 20 см, снабженные металлическими фланцами и надежными вентилями (с уплотнением металл по металлу). Использование таких емкостей обусловлено химической стойкостью кварца по отношению к кислотам, используемым при последующем растворении образующегося ^{103m}Rh, а также прозрачностью кварца для наблюдения за локализацией RuO₄.

Поскольку RuO₄ требует особо тщательного обращения, так как подвержен разложению при повышении температуры, в присутствии паров воды и под действием света, перед использованием кварцевые емкости тщательно герметизировались и дегазировались 200°C температуре одного После при В течение часа. переконденсации свежесинтезированного RuO₄ из металлической ловушки-сборника 1 (рис. 5) в кварцевую ловушку 2 (рис. 5), последняя закрывалась светонепроницаемым экраном и помещалась в морозильную камеру при температуре –22°С. При соблюдении этих мер предосторожности величина относительных потерь RuO₄ в результате его химического разложения составляла примерно 0.4 вес % за 10 суток хранения.

Количество собранного RuO₄, полученного из облученного образца металлического Ru весом 46 мг, определялось по измерению его давления. Для этого свежесинтезированный RuO₄ собирался в кварцевую емкость 3 (рис. 5), которая отогревалась до температуры 20°C, после чего газообразный RuO₄ распускался в известный объем гребенки, включающий мерную емкость 4 (рис. 5). Максимальное давление RuO₄ при распускании составило 6.2 мм рт. ст. (рис. 6), что позволило рассчитать массу RuO₄ в приближении идеального газа по следующей формуле:

$$m_{\rm RuO4} = \frac{P_{\rm RuO4} \cdot 3.3 \cdot 10^{19} \cdot V_{\rm RuO4}}{N_{\rm A}} \cdot \mu_{\rm RuO4} , \qquad (6)$$

где m_{RuO4} [г] – масса RuO₄; P_{RuO4} = 6.2 [мм рт.ст.] – давление RuO₄; 3.3·10¹⁹ [мм рт.ст.⁻¹·л⁻¹] – число молекул в одном литре газа при давлении1 мм рт. ст. (при темпратуре 20°С); V_{RuO4} = 1.126 [л] – объем газообразного RuO₄; N_{A} = 6.022·10²³ [моль⁻¹] – число Авогадро; μ_{RuO4} = 165 [г/моль] – молярная масса RuO₄; μ_{Ru} = 101 [а. е. м.] – атомная масса Ru.

Рис. 6. Установление давления газовой фазы RuO4 при распускании на мерный объем

Согласно расчету, масса собранного в ловушке RuO₄ составила 63 мг, масса Ru в котором 38.6 мг. Таким образом, при переработке облученного образца металлического рутения массой 46 мг в RuO₄ выход Ru составил примерно 84%.

Следует отметить, что одним из возможных перспективных путей использования синтезированного RuO₄ является формирование растворов комплексных соединений рутения, пригодных для извлечения дочернего ^{103m}Rh методом ионообменной хроматографии. Поскольку в силу своей высокой химической активности RuO₄ легко поглощается растворами кислот и щелочей, открывается возможность путем изменения состава растворителя, через который проводится его барботирование, получать такие соединения Ru, которые надежно удерживались бы на используемом сорбенте. Наличие в литературе количественных данных по молекулярным абсорбционным спектрам комплексов рутения [11] и родия [12] облегчает проведение поиска оптимальных растворителей для их разделения с помощью ионообменной хроматографии.

Процедура выделения ^{103m}Rh из RuO₄ осуществлялась следующим образом. Активность ¹⁰³Ru в ловушке с кристаллами RuO₄ измерялась по интенсивной гамма-линии E_{γ} =497 кэВ до и после процедуры отгонки RuO₄. Длительность отгонки составила 15 минут. После отгонки активность ¹⁰³Ru в ловушке на линии E_{γ} =497 кэВ не наблюдалась. Интенсивность рентгеновской линии в области энергии 20 кэВ с учетом временных поправок соответствовала равновесной активности ¹⁰³mRh, близкой к исходной активности ¹⁰³Ru, что говорит о высокой эффективности выделения ^{103m}Rh из RuO₄ при отгонке последнего. После отгонки проводился смыв ^{103m}Rh кипящей царской водкой. Через три часа после окончания процесса фотопик в области энергии 20 кэВ в растворе уже не регистрировался.

В качестве иллюстрации на рис. 7 приведены аппаратурные рентгеновские спектры ¹⁰³Ru и ^{103m}Rh при операциях по выделению ^{103m}Rh.

Рис.7. Стадии выделения ^{103m}Rh и соответствующие рентгеновские спектры...

Дальнейшее использование выделяемого таким образом ^{103m}Rh предполагает упаривание исходного раствора до влажных солей с последующим растворением в воде или кислотах с регламентированной молярностью.

3. ЗАКЛЮЧЕНИЕ

Наличие у Ru газообразной окиси (в отличие от иных элементов платиновой группы) оказалось весьма плодотворным для решения задачи по наработке изотопа ^{103m}Rh,

рассматриваемого в качестве кандидата для создания радиофармпрепаратов на его основе. Проведенная в работе конверсия металлического Ru в газообразный RuO₄, позволила получить рутений без примесей в виде RuO₄ и использовать его для наработки ^{103m}Rh, а также выделить нарабатываемый целевой изотоп ^{103m}Rh путем отгонки RuO₄.

Использование такого подхода открывает возможность создания генератора ^{103m}Rh на основе многократной перегонки порции RuO₄ из ловушки в ловушку и наработки ^{103m}Rh путем чередования перегонок и элюирования.

В работе получены следующие основные результаты:

- показана возможность создания ¹⁰³Ru/^{103m}Rh изотопного генератора, основанного на выделении дочернего ^{103m}Rh путем газификации и отгонки материнского RuO₄;
- разработана методика конверсии металлического Ru в RuO₄ с выходом примерно 84% по металлу;
- разработан способ синтеза K₂RuO₄ в растворе с использованием K₂S₂O₈ в качестве окислителя;
- предложено использовать получаемый RuO₄ для синтеза растворимых рутениевых комплексов с известным зарядом, позволяющих разделять рутений и ^{103m}Rh методами ионообменной хроматографии.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке НИЦ "Курчатовский институт"

СПИСОК ЛИТЕРАТУРЫ

- Skarnemark G., Odegaard-Jensen A., Nilsson J., Bartos B., Kowalska E., Bilewicz A., Bernhardt P. // J. Radioanal. Nucl. Chem. 2009. V. 280. P. 371. https://doi.org/10.1007/s10967-009-0529-1
- Bernhardt P., Forssell-Aronsson E., Jacobsson L., Skarnemark G. // Acta Oncol. 2001. V. 40.
 P. 602. https://doi.org/10.1080/028418601750444141
- Filosofov D., Kurakina E., Radchenko V. // Nucl. Med. Biol. 2021. V. 94–95. P. 1. https://doi.org/10.1016/j.nucmedbio.2020.12.001
- De Frenne D. // Nucl. Data Sheets. 2009. V. 110. P. 2081. https://doi.org/10.1016/j.nds.2009.08.002
- 5. Никольский А.Б., Рябов А.Н. // ЖНХ. 1965. Т. 10. С. 3.

- 6. *Никольский А.Б. //* ЖНХ. 1963. Т. 8. С. 1045.
- Горюнов А.А., Мюллер Р.Л., Капустина Л.К. // Вестник ЛГУ. Серия физ. хим. 1960. Т. 10. вып. 2. С. 104.
- 8. Горюнов А.А., Свешникова Л.А. // ЖНХ. 1960. Т. 6. С. 1543
- Connick R.E., Hurley C.R. // J. Am. Chem. Soc. 1952. V. 74. P. 5012. https://doi.org/10.1021/ja01140a007
- Брауэр Г., Герцог С., Глемзер О. Руководство по неорганическому синтезу. Т. 5. Москва: Мир, 1985.
- 11. Башилов А.В. Дис.... канд. хим. наук. Москва: МГУ, 2001.
- Wolsey W.C., Reynolds Ch.A., Kleynberg J. // Inorg. Chem. 1963. V. 2. P. 463. https://doi.org/10.1021/ic50007a009

ПОДПИСИ К РИСУНКАМ

- **Рис. 1.** Схема наработки и изомерного перехода целевого радиоизотопа ^{103m}Rh.
- **Рис. 2.** Фрагменты аппаратурных гамма-спектров ¹⁰³Ru: **a** облученного образца металлического Ru нейтронами через четыре месяца после облучения; **б** кристаллов ¹⁰³RuO₄, полученных конверсией металлического¹⁰³Ru.
- **Рис. 3.** Молярный коэффициент экстинкции иона RuO₄²⁻ (Ru(VI)) как функция длины волны (по данным работы [9]).
- Рис. 4. Схема газового стенда для синтеза и дистилляции RuO₄: 1 перегонная колба с KIO₄ и раствором K₂RuO₄, сверху на колбе расположена воронка для капельного введения H₂SO₄, под колбой магнитная мешалка; 2 колонка с осушителем газов ангидроном Mg(ClO₄)₂; 3 металлическая прокачная ловушка-сборник RuO₄; 4 вспомогательная прокачная ловушка, предотвращающая конденсацию влаги из атмосферы в сборник RuO₄ при выключения потока азота; 5 сосуды Дьюара с этилцеллозольвом (C₄H₁₀O₂) при температуре –78°C.
- Рис. 5. Схема вакуумного стенда для операций по выделению ^{103m}Rh: 1 металлическая ловушка с синтезированным ¹⁰³RuO₄; 2 кварцевая емкость с металлическим фланцем; 3 – кварцевая емкость с металлическим фланцем; 4 – мерная емкость; 5 – сорбционная ловушка с активированным углем; 6 – датчик давления ДТ-5; 7 – термоэлектронный датчик давления; 8, 9 – сосуды Дьюара с жидким азотом; 10 – форвакуумный насос; 11–24 – вентили.
- Рис. 6. Установление давления газовой фазы RuO₄ при распускании на мерный объем.
- Рис. 7. Стадии выделения ^{103m}Rh и соответствующие рентгеновские спектры: а – сконденсированные в ампуле кристаллы¹⁰³RuO₄; б – оставшийся в ампуле ^{103m}Rh после полной отгонки RuO₄ (контроль Ru по линии с энергией 497 кэВ); в – ампула после смыва ^{103m}Rh царской водкой; г – бюкс со смывом ^{103m}Rh царской водкой объемом 1мл.

Рис. 1.

Рис. 2.

Рис. 3.

Рис. 4.

Рис. 5.

Рис. 6.

Рис. 7