ТЕХНИКА ЯДЕРНОГО ЭКСПЕРИМЕНТА

УДК 539.1.074

ВРЕМЯПРОЛЕТНЫЙ СПЕКТРОМЕТР УСТАНОВКИ ИНЕС

© 2024 г. Р. М. Джилкибаев^{а,} *, Д. В. Хлюстин^а

^а Институт ядерных исследований Российской академии наук

Россия, 117312, Москва проспект 60-летия Октября, 7а

*e-mail: rmd@inr.ru

Поступила в редакцию 08.08.2024 г.

После доработки 19.09.2024 г.

Принята к публикации 03.10.2024 г.

Разработан метод определения стартового импульса для времяпролетной методики, который существенно повышает точность временной привязки к импульсу протонного пучка. Измерен энергетический спектр импульсного источника нейтронов РАДЭКС и проведено сравнение с результатами моделирования. Описана процедура определения формы импульса нейтронов от времени на базе измеренной формы импульса протонного пучка при замедлении нейтронов в мишени. Описан метод абсолютной калибровки спектрометра с учетом эффекта изменение энергии нейтрона вследствие многократного упругого рассеяния нейтрона в образце. Разработана процедура восстановления сечений радиационного захвата нейтрона ядром при многократном упругом рассеянии нейтронов в образце. Представлены результаты калибровочных измерений сечений радиационного захвата нейтрона ядром Аи на времяпролетном спектрометре установки ИНЕС. Проведено сравнение измеренных сечений с расчетными на основе известных параметров резонансов и сечениями, полученными ранее в эксперименте с тонким образцом.

1. ВВЕДЕНИЕ

Установка ИНЕС предназначена для измерения сечений радиационного захвата нейтрона ядром на импульсном источнике нейтронов РАДЭКС [1] центра коллективного пользования ИЯИ РАН. Установка дает возможность повысить точность измерения сечений радиационного захвата нейтронов на ядрах по сравнению с существующим уровнем. Это имеет важное значение для ядерной астрофизики, ядерной трансмутации и для накопления актинидов в тепловых ядерных реакторах при длительной работе.

Сечения радиационного захвата нейтронов на ядрах измеряются с помощью времяпролетной (TOF) методики [2]. Установка состоит из восьми секций сцинтилляционных детекторов γ-квантов [3], мониторных ³Не-счетчиков нейтронов [4], а также системы регистрации и обработки данных.

Для образования нейтронов импульсным протонным пучком в нейтронном источнике РАДЭКС используется вольфрамовая мишень с водяным охлаждением. Протонный пучок имеет энергию 267 МэВ, импульсный ток 5–7 мА, длительность 0.3 мкс, частоту импульсов 50 Гц. Энергия нейтронов определяется по времени пролета, измеряемого многоканальным TDC-кодировщиком с непрерывной записью сигналов от γ -детектора каждые 100 нс в течении 19.66 мс, который запускается синхроимпульсом протонного пучка. Время пролета нейтрона *T* [мкс] определяется пролетной базой установки *L* [м] и энергией нейтрона *E* [эВ] следующим образом: $T = 72.3LE^{-1/2}$. Пролетная база установки *L* определяется расстоянием от мишени (W) источника до измеряемого образца и равна 49.4 м. Относительная погрешность в измерении энергии нейтрона зависит от временной неопределенности δT и равна $\delta E/E$ [%]= 2.77 $E^{1/2} \delta T/L$ [2]. Основной вклад во временную неопределенность δT вносит длительность протонного пучка равная примерно 0.3 мкс. Время пролета и относительная ошибка в измерении энергии для нейтрона с энергией 100 эВ равны 357 мкс и 0.17% соответственно.

На рис. 1. приведено схематическое изображение времяпролетного спектрометра установки ИНЕС на нейтронном канале N источника РАДЭКС. Протонный пучок Р взаимодействует с охлаждаемой водой мишенью W. Две группы нейтронных ³Не-счетчиков расположены до и после сцинтилляционного гамма-детектора Sc. Индукционный датчик тока (ID) измеряет форму импульса протонного пучка. Вакуумированный канал V имеет длину 44 м.

Рис. 1. Схематическое изображение времяпролетного спектрометра установки ИНЕС на нейтронном канале N источника РАДЭКС.

Первая группа нейтронных ³Не-счетчиков предназначена для измерения энергии нейтронов и состоит из четырех нейтронных счетчиков СНМ-18-1 [4]. Эти счетчики установлены перед сцинтилляционным гамма-детектором в пучке нейтронов вне зоны образца диаметром 7 см так, чтобы не возмущать поток нейтронов, падающих на образец. Вторая группа счетчиков установлена после гамма-детектора, вблизи центральной оси пучка нейтронов и предназначена для измерения ослабления потока нейтронов за образцом. Для калибровочных измерений использовался образец из золота (Au 99.99%) толщиной 1.065 мм и поперечным размером 44×44 мм².

Нейтронные каналы источника РАДЭКС направленны на вольфрамовую мишень и расположены близко к оси протонного пучка. Поэтому в каналы попадают первичные гаммакванты и высокоэнергетические нейтроны, образованные протонами в мишени. Энергетический спектр нейтронов простирается вплоть до максимальной энергии, равной энергии протонов.

Сцинтилляционный детектор [3] представляет собой полую тонкостенную (2 мм) алюминиевую цилиндрическую камеру длиной 400 мм, диаметром 400 мм с общим объемом 40 литров, заполненную жидким сцинтиллятором. Диаметр полости равен 110 мм. Внутри камера делится на 8 независимых секций. Каждая секция просматривается фотодетектором ФЭУ-110, частично погруженным в жидкий сцинтиллятор. Диаметр фотокатода равен 60 мм. Жидкий сцинтиллятор состоит из толуола (C6H5CH3) объемом 34.5 л, триметилбората B(OCH)3 – объемом 5.5 л с обогащенным (94%) изотопом бора ¹⁰В и сцинтиллирующих добавок РРО и РОРОР весом 50 г. Оценка длин поглощения тепловых нейтронов ядрами водорода и бора в сцинтилляторе дает величины 46 см и 0.34 см соответственно [3]. Таким образом, добавление метилбората позволяет эффективно, в 135 (46/0.34) раз, подавить гамма-кванты с энергией 2.2 МэВ от радиационного захвата фоновых нейтронов ядрами водорода в сцинтилляторе.

Электроника 8-секционного гамма-детектора и 8 нейтронных счетчиков, состоит из зарядово-чувствительного предусилителя и усилителя-формирователя [3]. Цифровые сигналы с гамма-детектора (8 каналов) и нейтронных счетчиков (8 каналов) поступают на 16-канальный временной кодировщик (TDC) с USB-интерфейсом с возможностью обработки цифровой информации (2 байта) каждые 100 нс со скоростью 20 MB/с. Предварительная обработка и сжатие информации позволяет сократить реальный объем данных для записи на диск в 630 раз. Типовой набор данных с установки за время 7 ч составляет порядка 800 MB. Аналоговые сигналы обрабатываются выборочно 16-канальным аналого-цифровым преобразователем САЕN DT5742 (waveform digitizer) [5].

2. ИЗМЕРЕНИЕ ПЛОТНОСТИ ПОТОКА НЕЙТРОНОВ

Плотность потока нейтронов $\Phi(E)$ моделировалась с помощью программы MCNP [6]. Мишень состоит из 80% W и 20% H₂O. При моделировании предполагалось, что протонный пучок с энергией 300 МэВ попадает в центр мишени, состоящей из тонких вольфрамовых пластин с общей толщиной 8 см и поперечным размером 13 × 13 см². Рассчитанный поток нейтронов $\Phi^{\text{th}}(E)$, вылетающих из мишени вперед относительно протонного пучка, в зависимости от энергии нейтронов показан на рис. 2а. Аппроксимация нейтронного потока в области от 1 до 10⁵ эВ зависимостью $\Phi(E) = C/E^{\alpha}$ дает значение $\alpha = 0.9$. Измерение потока нейтронов проводилось с помощью мониторных нейтронных счетчиков. Эти счетчики установлены перед сцинтилляционным гамма-детектором в пучке нейтронов вне зоны образца. На рис. 26 показан спектр потока нейтронов в зависимости от их энергии, измеренный мониторными ³Не-счетчиками. На измеренном спектре хорошо виден провал от выбывания нейтронов в W мишени из-за радиационного захвата нейтронов ядрами изотопа ¹⁸⁰W, а также резонанс с энергией 19 эВ. Два других провала обусловлены примесью следующих изотопов в элементах мишенного узла источника РАДЭКС и нейтронного вакуумного канала: кобальта ⁵⁹Со, имеющего резонанс с энергией 132 эВ, и марганца ⁵⁵Mn, имеющего резонанс с энергией 341 эВ. Измеренный поток нейтронов аппроксимируется зависимостью $\Phi(E) = Cg(E)/E^{\alpha}$, где коэффициент $g(E) = \exp(\sum_{n_i} \sigma_t^i(E))$ обусловлен выбиванием нейтронов элементами нейтронного канала. При этом параметры *C* и эффективная плотность *i*-го изотопа n_i определяются в результате процедуры аппроксимации измеренного потока нейтронов $\Phi^{exp}(E)$.

Рис. 2. а – Рассчитанный поток нейтронов $\Phi^{th}(E)..., \mathbf{6}$ – измеренный поток нейтронов $\Phi^{exp}(E),...$

Измеренный поток нейтронов $\Phi^{\exp}(E)$ и результаты аппроксимации потока зависимостью $Cg(E)/E^{\alpha}$ показаны на рис. 26. При этом показатель степени в зависимости от энергии нейтрона составляет величину равную $\alpha = 0.895 \pm 0.005$ в области энергии 5–500 эВ. Это хорошо согласуется с показателем $\alpha = 0.9$ для смоделированного потока нейтронов.

3. СТАРТОВЫЙ ИМПУЛЬС ДЛЯ ВРЕМЯПРОЛЕТНЫХ ИЗМЕРЕНИЙ

Для измерения энергии нейтронов (ТОГ-метод) необходимо измерить разность между временем регистрации гамма-квантов от процесса захвата нейтрона ядром и временем образования нейтрона. Энергия нейтрона при известной длине базы установки L равна $E=0.5 M_n$ $(L/dT)^2$, где M_n – масса нейтрона и dT – разность между временем регистрации гамма-квантов и временем образования нейтрона. В качестве стартового импульса, связанного с временем образования нейтрона, можно использовать сигнал синхроимпульса ускорителя или время регистрации гамма-квантов, образованных протонами в мишени источника W, гаммадетектором установки. В первом варианте точность измерения времени образования нейтронов в мишени W зависит в основном от временной нестабильности синхроимпульса ускорителя, которая составляет большую величину, около 1 мкс. При взаимодействии протонов с мишенью W источника рождается на порядок больше гамма-квантов, чем нейтронов, в расчете на первичный протон. При этом все гамма-кванты достигают мишени Au в узком временном интервале длительности протонного пучка (0.3 мкс), в отличие от нейтронов, которые имеют значительно больший разброс. Например, нейтрон с энергией 20 МэВ достигает мишени установки на 0.6 мкс позже, чем гамма-кванты. Регистрация вспышки от гамма-квантов и непрерывная запись цифровой информации от гамма-детектора каждые 100 нс позволяют получить время начала сброса протонов на мишень с точностью примерно 100 нс в каждом импульсе протонного пучка при обработке ТОГ-данных офлайн [4]. Это на порядок точнее, чем в первом варианте синхронизации. При этом синхроимпульс протонного пучка играет второстепенную роль и служит для относительной временной привязки. Таким образом, интенсивная вспышка гамма-квантов с длительностью, равной длительности протонного пучка (0.3 мкс), позволяет получить независимый от синхроимпульса протонного пучка стартовый сигнал для ТОГ-измерений в каждом импульсе. При этом временное разрешение TOF-метода будет определяться, в основном, формой протонного импульса.

4. АППРОКСИМАЦИЯ ПРОТОННОГО И НЕЙТРОННОГО ИМПУЛЬСОВ

Форма протонного импульса $p_{exp}(t)$, измеренная индукционным датчиком тока, показана на рис. За. В первом приближении форму протонного импульса можно описать как прямоугольное распределение с шириной, равной 0.4 мкс примерно для 95% протонов. Остальные протоны (около 5%) имеют экспоненциальное распределение с временем спада около 1мкс. Более точно несимметричная форма протонного импульса может быть описана комбинацией функций, состоящей из асимметричной функции Гаусса $G(\sigma_1, \sigma_2)$ и двух экспонент для областей времени t < 0 и t > 0:

$$p_{\text{gex}}(t) = K_n^{-1} \left\{ G\left(\sigma_1, t\right) + \varepsilon \exp\left(\frac{t}{\tau_1}\right) \right\}, t < 0; \ p_{\text{gex}}(t) = K_n^{-1} \left\{ G\left(\sigma_2, t\right) + \varepsilon \exp\left(-\frac{t}{\tau_2}\right) \right\}, \quad t > 0.$$
(1)

Нормированная функция $p_{gex}(t)$ зависит от пяти параметров: σ_1 , σ_2 , ε , τ_1 , τ_2 . Нормировочный множитель равен $K_n = 0.5(\sigma_1 + \sigma_2) + \varepsilon(\tau_1 + \tau_2)$. Как видно на рис. За, измеренная форма протонного импульса сравнительно хорошо аппроксимируется функцией $p_{gex}(t)$.

Рис. 3. а – Измеренная форма протонного импульса $p_{exp}(t)$ (точки) и результат его аппроксимации функцией $p_{gex}(t)$ (сплошная кривая)

Нейтроны, рожденные в мишени источника W, испытывают замедление в водной оболочке мишени толщиной примерно 4 см. Среднее время между столкновениями нейтрона с протонами в водном замедлителе определяется средней длиной взаимодействия, равной 0.93 см, и составляет величину равную $t_{\rm s} \sim 0.7/E^{0.5}$ мкс, где E [эB] – энергия нейтрона на выходе из

мишени. При ряде упрощающих предположений можно показать [2], что интенсивность выходящих из замедлителя нейтронов описывается нормированной функцией $w(t) = 0.5 x^2 \exp(-x)$, где $x = t/t_s$. Эта функция описывает распределение по времени нейтронов, рожденных в мишени протонами в момент времени t = 0. Эта функция имеет максимум при $t = 2t_s$ и среднее время замедления, равное $3t_s$. Для учета эффекта замедления нейтронов в водной оболочке мишени необходимо использовать смещенную по времени функцию w(t) при условии, что она имеет максимум при t = 0. На рис 3б показан график смещенной функции w(t), описывающей замедление нейтронов с энергией 150 эВ со сдвигом по времени, равным $2t_s$. Например, для нейтронов с энергий 150 эВ среднее время t_s составляет величину, равную примерно 60 нс. Функция замедления нейтронов w(t) также хорошо аппроксимируется асимметричной функцией Гаусса с дисперсиями равными $\sigma_1 = t_s$ и $\sigma_2 = 2t_s$.

Форма нейтронного импульса от времени получается в результате процедуры свертки формы протонного импульса и функции замедления нейтронов. Процедуру получения результирующей формы нейтронного импульса для двух случаев: измеренного протонного импульса $p_{\exp}(t)$ и формы, аппроксимирующей измеренный протонный импульс $p_{gex}(t)$, можно записать в следующем виде:

$$p_{\exp}^{w}(t) = \int p_{\exp}(t')w(t-t')dt', \quad p_{gex}^{w}(t) = \int p_{gex}(t')w(t-t')dt'.$$
(2)

На рис. 4 показаны результаты вычисления формы нейтронного импульса для нейтронов с энергией 150 эВ с использованием измеренной и аппроксимирующей формы протонного импульса. На рис. 4 видно, что результирующие формы нейтронного импульса $p_{\exp}^{w}(t)$ и $p_{gex}^{w}(t)$ с энергией 150 эВ хорошо согласуются между собой.

Рис. 4. Расчетные формы $p_{exp}^{w}(t)$ и $p_{gex}^{w}(t)$ нейтронного импульса с энергий 150 эВ

Вычисление формы нейтронного импульса путем численного интегрирования требует значительного времени. Благодаря тому, что асимметричная функция Гаусса хорошо описывает форму протонного импульса и функцию замедления нейтронов, она также дает возможность получить аналитическое выражение для формы нейтронного импульса. В этом приближении процесс вычисления сводится к свертке двух функций Гаусса. В итоге можно получить модифицированную аналитическую функцию разрешения R(t) для формы нейтронного импульса, которая получается из приведенной выше функции $p_{gex}(t)$ (1) путем простой замены параметров σ_1^2 и σ_2^2 на $\sigma_{1s}^2 = \sigma_1^2 + t_s^2$ и $\sigma_{2s}^2 = \sigma_2^2 + (2t_s)^2$ соответственно. Функция разрешения R(t) учитывает временной разброс вылета нейтронов из мишени источника, обусловленный формой импульса протонного пучка и замедлением нейтронов в водной оболочке мишени:

$$R(t) = K_n^{-1} \left\{ G\left(\sigma_{1s}, t\right) + \varepsilon \exp\left(\frac{t}{\tau_1}\right) \right\}, \quad t < 0;$$

$$R(t) = K_n^{-1} \left\{ G\left(\sigma_{2s}, t\right) + \varepsilon \exp\left(-\frac{t}{\tau_2}\right) \right\}, \quad t > 0.$$
(3)

Нормировочный множитель равен $K_n = 0.5(\sigma_{1s} + \sigma_{2s}) + \varepsilon(\tau_1 + \tau_2)$. В модифицированной формуле параметры σ_{1s} и σ_{2s} описывают основную форму протонного импульса с учетом эффекта замедления нейтронов в мишени источника.

5. ПРЕДВАРИТЕЛЬНАЯ КАЛИБРОВКА ТОГ-СПЕКТРОМЕТРА

Предварительная процедура, основанная на сопоставление пиков в измеренном времяпролетном спектре [4] и энергии резонансов в сечении реакции ¹⁹⁷Au(n, γ) на основе данных ENDF/B-VIII.0 [7], позволяет определить параметры T_0 и L по формуле $T = T_0 + 72.298 L/\sqrt{E}$.

Рис. 5. а – Измеренный спектр (точки) и сечение взаимодействия нейтрона с ядром в реакции п,γ (сплошная синяя линия) в образце Au в диапазоне 100–550 мкс;

Измеренный спектр радиационного захвата нейтрона в образце золота и сечение взаимодействия нейтрона с ядром в реакции 197Au(n, γ) в зависимости от времени пролета нейтрона показан на рис. 5а. Для времяпролетного спектра отложено число событий, зарегистрированных за 100 нс. Сечение взаимодействия нейтрона с ядром в реакции n,γ соответсвует оси справа. Ширина канала времяпролетного спектра dT, равная 100 нс, связана с шириной канала спектра по энергии (dE) соотношением dE/E = 2 dT/T. Время пролета T [мкс] нейтрона в установке в зависимости от энергии нейтрона E [эВ] вычисляется по формуле $T = T_0$ + 72.298 L/\sqrt{E} с двумя параметрами T_0 [мкс] и L [м], которые определяют начальное время и длину базы установки соответственно. Аппроксимация измеренных данных по методу наименьших квадратов (рис. 56) дает следующие результаты для параметров T_0 и L: $T_0 = 1.18 \pm$ 0.07 мкс, $L = 49.39 \pm 0.01$ м.

6. ИЗМЕРЕНИЕ ЗАВИСИМОСТИ ФОНА ОТ ВРЕМЕНИ

Для определения зависимости фона от времени используется спектр $C_{bg}(t)$ без образца золота и спектр $C_{Au}(t)$ с образцом золота. Экспериментально измеренную вероятность радиационного захвата нейтрона ядром образца Au можно выразить следующим образом [8]:

$$Y_{\exp}(t) = \left(C_{\operatorname{Au}}(t) - B(t)\right) / \left(\epsilon f \Phi(t)\right), \qquad (4)$$

где $C_{Au}(t)$ – экспериментально измеренный времяпролетный спектр радиационного захвата нейтрона ядром образца, t – время пролета нейтрона, B(t) – спектр фона, полученный на основе

измерений без образца и аппроксимации спектра $C_{Au}(t)$ между резонансами, $\Phi(t)$ – поток нейтронов, попадающих в исследуемый образец, ε – эффективность детектора гамма-квантов, f – часть нейтронного потока, попадающая в образец. Измеренный спектр фона $C_{bg}(t)$ аппроксимируется следующей зависимостью:

$$B(t) = C_1 / t^{\alpha} + C_2 / t^{\beta},$$
 (5)

где C_1 , C_2 , α , β – параметры зависимости B(t). На рис. 6а показаны измеренные спектры $C_{Au}(t)$ с образцом золота и без него $C_{bg}(t)$. Следует отметить, что статистика при измерении фона $C_{bg}(t)$ в несколько раз меньше, чем спектра $C_{Au}(t)$. В наших измерениях постоянный фон, не зависящий от времени, значительно меньше фона, зависящего от времени.

Процедура определения параметров фона B(t) состоит их двух этапов: на первом этапе определяются предварительные параметры фона B(t) путем аппроксимации измеренного спектра без образца; на втором этапе процедуры используются предварительные параметры фона для финальной аппроксимации параметров фона B(t) для спектра $C_{Au}(t)$ с отобранными участками спектра между резонансами (см. рис. 6а). Измеренный спектр за вычетом фона равен $C_{Au}^{exp}(t) = C_{Au}(t) - B(t)$ и представлен на рис. 6б.

Рис. 6. а – Измеренные спектры с образцом Au (
$$C_{Au}$$
) и без него (C_{bg})

7. АБСОЛЮТНАЯ КАЛИБРОВКА НА БАЗЕ РЕЗОНАНСА С ЭНЕРГИЕЙ 4.9 ЭВ

Метод абсолютной калибровки эффективности детекторов гамма-квантов и мониторов нейтронного потока, использующий измерение относительно известного насыщенного резонанса с большим сечением (более 10^4 бн) предложен в работе [9]. Резонанс в золоте при энергии 4.9 эВ хорошо известен и имеет в максимуме полное сечение равное 3.03×10^4 бн и 2.73×10^4 бн для радиационного захвата. При таком подходе можно переписать выражение для $Y_{exp}(E)$ (4) следующим образом:

$$Y_{exp}(E) = (C_{Au}(E) - B(E)) / C_n \Phi(E), \qquad (6)$$

где C_n – числовой параметр потока нейтронов, нормализующий вероятность захвата $Y_{\exp}(E)$ ядром образца Au относительно известного насыщенного резонанса 4.9 эВ.

В этом подходе неизвестные параметры полного потока нейтронов и эффективности детекторов сводятся к одному параметру C_n , который определяется процедурой аппроксимации экспериментального спектра резонанса 4.9 эВ. Нейтроны с энергией около максимума резонанса 4.9 эВ практически полностью поглощаются ядром образца с вероятностью равной σ_{γ}/σ_t (1 – exp(- $n\sigma_t$)), которая составляет величину равную примерно 90%. Сечение σ_{γ} радиационного

захвата нейтрона ядром и полное сечение σ_t вычисляются по одноуровневым формулам Брейта– Вигнера [10] с учетом доплеровского уширения резонансов. Приведенная толщина Au образца $n = 6.29 \cdot 10^{-3}$ бн⁻². Нейтроны в образце либо не испытывают, либо испытывают многократное упругое рассеяние до процесса радиационного поглощения ядром (рис. 7а). При каждом упругом рассеянии нейтроны с энергией *E* теряют энергию в среднем порядка $\Delta E \sim 2E/A$, где A – атомный вес ядра. Приведенная выше формула $\sigma_{\gamma}/\sigma_t(1-\exp(-n\sigma_t))$ для вероятности взаимодействия нейтрона с образцом корректна для варианта с нулевым многократным рассеянием до радиационного поглощения нейтрона ядром.

Рис. 7. а – Пример взаимодействия нейтрона в образце с упругим многократным рассеянием (0, 1, 2) до радиационного поглощения ядро

В наших измерениях используется сравнительно толстый образец золота (1.065 мм), поэтому необходимо учитывать эффект, связанный с изменением энергии нейтрона от многократного упругого рассеяния в образце. Для этого использовался метод Монте-Карло, моделирующий процесс взаимодействия нейтрона с образцом в области каждого резонанса с использованием сечений библиотеки ENDF/B-VIII.0 [7]. Для каждого резонанса разыгрывалось несколько миллионов событий взаимодействия нейтрона с образцом Au. На примере резонанса 4.9 эВ кратко опишем процедуру моделирования на основе метода весов [11]. Для описания процедуры определим следующие величины на *i*-ом шаге взаимодействия нейтрона в образце: вес события W_i ; энергия нейтрона E_i ; длина L_i^{max} равна расстоянию от точки взаимодействия (x,y,z,)_{*i*} до поверхности образца в направлении полета нейтрона с углами (θ, φ)_{*i*}; обратная длина взаимодействия нейтрона $\mu_i(E_i) = \rho \sigma_i(E_i)$, где ρ – плотность образца; $W_{\gamma} = \sigma_{\gamma}(E_i)/\sigma_i(E_i)$; $\lambda_i(E_i)$ – длина свободного пробега нейтрона. Моделирование каждого события состоит из следующих этапов:

- 1) задание начальных значений $W_0 = 1$, $L_0^{\max} = \Delta t$ толщина образца, $(x,y,z,)_0 = (0,0,0)$, $(\theta,\phi)_0 = (0,0)$, вычисление энергии нейтрона E_0 с равномерной плотностью распределения от 0.1 до 15.1 эВ;
- 2) вычисление длины свободного пробега нейтрона $\lambda_i(E_i)$ в пределах от 0 до L_i^{\max} и координаты *i*-ой вершины $(x, y, z)_i$ траектории нейтрона;
- 3) вычисление нового веса события с $w_i = w_i(1 \exp(-\mu_t(E_i)L_i^{\max}(E_i)))$, вычисление веса вероятности захвата нейтрона ядром $Y_i^{cap} = w_i W_{\gamma}(E_i)$, вычисление энергии E_i , вычисление (θ, φ)_{*i*}, сохранение данных (*iev*, где *iev* номер события, *i*, E_i , *xyz*, θ, φ , Y_i^{cap} ,);
- 5) вычисление нового веса события $w_i = w_i(1-W_{\gamma})$ для следующего шага моделирования;

6) повторение процесса начиная с пункта 2), если вес события $W_i > 10^{-6}$, и остановка процесса, если $W_i < 10^{-6}$.

На рис.76 показан результат моделирования взаимодействия нейтрона в образце Au в области резонанса с энергией 4.9 эВ для процесса с многократным упругим рассеянием (Y_{ms}^{cap}) и без него (Y_0^{cap}). Следует отметить, что процесс без многократного упругого рассеяния описывается формулой

$$Y_0^{\operatorname{cap}}(E) = \sigma_{\gamma}(E) / \sigma_t(E) (1 - \exp(-n\sigma_t(E))).$$

Поправочная функция *G*_{ms}(*E*), учитывающая изменение энергии нейтрона вследствие многократного упругого рассеяния в образце, определяется следующим образом:

$$G_{\rm ms}(E) = Y_{\rm ms}{}^{\rm cap}(E) / Y_0{}^{\rm cap}(E).$$

На рис. 8а и 8б представлена поправочная функция *G*_{ms}(*E*) для области резонанса с энергией 4.9 эВ и в более широкой области энергий до 280 эВ соответственно.

Рис. 8. а – Поправочная функция $G_{ms}(E)$, учитывающая изменение энергии нейтрона...; б – функция $G_{ms}(E)$ для резонансов с энергией меньше 280 эВ.

Расчетный спектр *C*_{Au}th радиационного захвата нейтрона ядром Au, измеренный времяпролетным спектрометром, выражается следующим образом:

$$C_{\rm Au}^{th} = C_n \Phi(t) Y_{th}(t) \Delta t, \quad Y_{th}(t) = \int R(t, t') w(E') G_{ms}(E') dt, \quad w(E) = \frac{\sigma_{\gamma}(E)}{\sigma_t(E)} (1 - e^{-n\sigma_t(E)}), \quad (7)$$

где w(E) – вероятность радиационного захвата нейтрона ядром с учетом поглощения в образце, C_n – числовой параметр потока нейтронов, который определяется аппроксимацией измеренного спектра в области насыщенного резонанса 4.9 эВ, Δt – ширина временного канала (100 нс), $\Phi(t)$ – поток нейтронов, падающих на образец, измеренный мониторными ³Не-счетчиками, функция разрешения R(t, t') учитывает временной разброс вылета нейтронов из мишени источника, обусловленный формой импульса протонного пучка и замедлением нейтронов в водной оболочке мишени, $G_{ms}(E)$ – поправочная функция, учитывающая изменение энергии нейтрона вследствие многократного упругого рассеяния в образце. Сечение σ_{γ} радиационного захвата нейтрона ядром и полное сечение σ_t вычисляются по одноуровневым формулам Брейта–Вигнера [10] с учетом доплеровского уширения резонансов.

Измеренный C_{Au}^{exp} и расчетный C_{Au}^{th} времяпролетные спектры реакции (n, γ) для резонанса с энергией 4.9 эВ в образце Au показаны на рис. 9. Расчетный спектр C_{Au}^{th} (рис. 9а) вычисляется с учетом поправочной функции $G_{ms}(E)$, учитывающей изменение энергии нейтрона вследствие многократного упругого рассеяния в образце. На рис. 9б показан расчетный спектр C_{Au}^{th} без учета функции $G_{ms}(E)$. **Рис. 9. а** – Измеренный C_{Au}^{exp} и расчетный C_{Au}^{th} спектры с учетом поправочной функции G_{ms} для резонанса с энергией 4.9 эВ

Как видно из сравнения рис. 9а и 96, учет эффекта изменение энергии нейтрона вследствие многократного упругого рассеяния нейтронов в образце существенно улучшает согласие измеренного спектра с расчетным. Следует отметить, что моделирования эффекта изменения энергии нейтрона вследствие многократного упругого рассеяния нейтрона в образце и обработка данных эксперимента написаны на языке python с использованием многочисленных пакетов (math, numpy, scipy, ...) [12].

8. КАЛИБРОВОЧНЫЕ ИЗМЕРЕНИЯ СЕЧЕНИЯ РЕАКЦИИ (n, γ) В ОБРАЗЦЕ ЗОЛОТА

Для тонкого образца, когда величина $n\sigma_t$ много меньше единицы, функция (7), описывающая вероятность w(E) радиационного захвата нейтрона ядром с учетом поглощения в образце, сводится к выражению $w(E) \simeq n \sigma_{\gamma}(E)$, где n и $\sigma_{\gamma}(E)$ – соответственно приведенная толщина образца и сечение радиационного захвата нейтрона ядром. Поправочная функция $G_{\rm rns}(E)$, учитывающая изменение энергии нейтрона вследствие многократного упругого рассеяния в случае тонкого образца, становится близкой к единице. Функция разрешения R(t,t), учитывающая временной разброс вылета нейтронов из мишени источника, обусловленный формой импульса протонного пучка и замедлением нейтронов в водной оболочке мишени, превращается в идеальном эксперименте в δ -функцию по времени. В этом случае расчетный спектр $Y_{\rm th}$ радиационного захвата нейтрона ядром в приближении идеального разрешения и тонкого образца упрощается и может быть записан в следующем виде:

$$Y_{\rm th}(E) = w(E), \ w(E) = \frac{\sigma_{\gamma}(E)}{\sigma_t(E)} (1 - e^{-n\sigma_t}), \ w(E) \simeq n \,\sigma_{\gamma}(E).$$
(8)

Выражение (8) для случая толстого образца, может быть переписано через функцию $R_w(E)$ в следующем упрощенном виде:

$$Y_{\rm th}(E) = R_w(E) w(E), \quad R_w(E) = \int R(t, t') w(E') G_{ms}(E') dt' / w(E).$$
(9)

Относительная функция $R_w(E)$ учитывает временной разброс вылета нейтронов из мишени источника и эффект изменения энергии нейтрона вследствие многократного упругого рассеяния нейтронов в образце относительно вероятности w(E) радиационного захвата нейтрона ядром в идеальном случае. Исходя из условия $Y_{exp}(E) = Y_{th}(E)$ и выражения (9), можно выразить сечение радиационного захвата нейтрона ядром σ_{γ}^{exp} через экспериментально измеренную вероятность радиационного захвата нейтрона ядром в следующем виде:

$$\sigma_{\gamma}^{\exp} = \frac{Y_{\exp}(E)\sigma_t}{R_w(E)(1 - \exp(-n\sigma_t))},$$
(10)

где σ_t – полное сечение взаимодействия нейтрона с ядром.

Обработка измеренных данных и восстановление сечений радиационного захвата нейтрона ядром на времяпролетном спектрометре установки ИНЕС с толстым образцом Au (1.065 мм) проводилась в диапазоне энергий нейтрона до 300 эВ. Расчетное сечение $\sigma_{\gamma}^{\text{th}}$ радиационного захвата Au получено на основе базы данных резонансов ENDF/B-VIII.0 [7]. Введем термин измеренное сечение $\sigma_{\gamma}^{\text{exp}}$, который означает сечение, восстановленное из измеренных выходов $Y_{\text{exp}}(E)$ по формуле (10). Для большей наглядности измеренное сечение $\sigma_{\gamma}^{\text{exp}}$ и расчетное сечение $\sigma_{\gamma}^{\text{th}}$ реакции (n, γ) показаны в более узком диапазоне энернгий100–200 эВ на рис. 10а. На этом рисунке видно, что измеренное и расчетное сечения хорошо согласуются между собой.

В эксперименте n_TOF [8] были проведены самые точные измерения сечения радиационного захвата нейтрона ядром Au с тонким образцом (0.122 мм). При этом длительность протонного пучка составляла величину, равную 6 нс, пролетная база равнялась 185 м. В установке ИНЕС эти величины равны 300 нс и 50 м соответственно. Таким образом, условия (8) идеального эксперимента практически реализованы в установке n_TOF.

Рис. 10. а – Измеренное σ_{γ}^{exp} и расчетное σ_{γ}^{th} сечения взаимодействия нейтрона с ядром для реакции n, γ в диапазоне энергий 100–200 эВ в образце Au (1.065 мм) в эксперименте ИНЕС ;

Измеренное σ_{γ}^{exp} и расчетное σ_{γ}^{th} сечения взаимодействия нейтрона с ядром для реакции *n*, γ в диапазоне 100–200 эВ в тонком образце Au (0.122 мм) в эксперименте ИНЕС вычислялось по формуле (10) с использованием данных эксперимента n_TOF из базы данных [7]. При этом функция $R_w(E)$ заменяется нормировочной константой равной 1.1. Экспериментальные данные n_TOF по выходу нейтронов нормируются таким образом, что $Y_{exp}(4.9 \text{ pB}) = 1.$

На рис. 10б показаны измеренное σ_{γ}^{exp} и расчетное σ_{γ}^{th} сечения взаимодействия нейтрона с ядром для реакции n, γ в диапазоне 100–200 эВ в тонком образце Au (0.122 мм) в эксперименте n_TOF. Сравнение рис. 10а и 10б показывает хорошее согласие измеренных сечений в эксперименте ИНЕС с данными эксперимента n_TOF [8]. Сравнение измеренных сечений с расчетными сечениями, полученными на основе параметров резонансов ENDF/B-VIII.0 [7], и сечениями, полученными ранее в эксперименте n_TOF с тонкой мишенью, показывает, что эти сечения хорошо согласуются между собой.

9. ЗАКЛЮЧЕНИЕ

Разработан метод определения стартового импульса для времяпролетной методики, который существенно повышает точность временной привязки к импульсу протонного пучка. Измерен энергетический спектр импульсного источника нейтронов РАДЭКС и проведено сравнение с результатами моделирования. Описана процедура определения формы импульса нейтронов от времени на базе измеренной формы импульса протонного пучка с учетом замедления нейтронов в мишени. Описан метод абсолютной калибровки спектрометра с учетом эффекта изменения энергии нейтрона вследствие многократного упругого рассеяния нейтрона в образце. Разработана процедура реконструкции сечений радиационного захвата нейтрона ядром для случая толстого образца. Представлены результаты измерений сечений радиационного захвата нейтрона ядром Аu на времяпролетном спектрометре установки ИНЕС с энергиями до 300 эВ. Измеренные сечения хорошо согласуются с расчетными сечениями на основе известных параметров резонансов и сечениями, полученными ранее в эксперименте с тонким образцом.

БЛАГОДАРНОСТИ

Авторы считают своим приятным долгом выразить благодарность В.Г. Проняеву, В.Л. Матушко, И.И. Ткачеву, А.В. Фещенко за поддержку и помощь в работе.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена с использованием оборудования центра коллективного пользования "Ускорительный центр нейтронных исследований структуры вещества и ядерной медицины ИЯИ РАН" при поддержке Министерства науки и высшего образования РФ в рамках соглашения о предоставлении субсидии (№ 14.621.21.0014 от 28.08.2017, уникальный идентификатор RFMEFI62117X0014).

СПИСОК ЛИТЕРАТУРЫ

- Бенецкий Б.А., Вахетов Ф.З., ГрачевМ.И., Даньшин С.Н., Емельянов В.В., Жуков Ю.Н., Заикин Д.А., Коптелов Э.А., Кутузов В.А., Лебедев С.Г., Мордовской М.В., Рябов Ю.В., Сазанов В.Н., Скоркин В.И., Соболевский Н.М. и др. Препринт ИЯИ-1058/2001, Институт ядерных исследований, Москва, 2001.
- 2. *Абрамов А.И., Казанский Ю.А, Матусевич Е.С.* Основы экспериментальных методов ядерной физики: Москва: Атомиздат, 1970.

- 3. Васильев И.А., Джилкибаев Р.М., Хлюстин Д.В. // ПТЭ. 2020. №. 2. С. 13. https://doi.org/10.31857/S0032816220010255
- 4. Васильев И.А., Джилкибаев Р.М., Хлюстин Д.В.// ПТЭ. 2021. № 1. С. 56. https://doi.org/10.31857/S0032816221010171
- 5. CAEN DT5742, 16 channel 12 bit waveform digitizer. http://www.caen.it
- 6. MCNP, Monte Carlo N-Particle code. https://mcnp.lanl.gov
- Sirakov I., Kopecky S., Yong P.G.// IAEA, ENDF/B-VIII.0 Database, LANL. http://www-nds.iaea.org/exfor/endf.html
- Massimi C., Domingo-Pardo C., Vannini G. et al. // Phys. Rev. C. 2010. V. 81. P. 044616. https://doi.org/10.1103/PhysRevC.81.044616
- Macklin R.L., Halperin J., Winters R.R. // Nucl. Instrum. Methods. 1979. V.164. P. 213. https://doi.org/10.1016/0029-554X(79)90457-9
- 10. JAEA-Data Code 2018-014. http://doi.org/10.11484/jaea-data-code-2018-014
- Mancinelli R. // J Phys Conf Ser. 2012. V. 340. P. 012033. https://doi.org/10.1088/1742-6596/340/1/012033
- 12. Python. http://www.python.org

ПОДПИСИ К РИСУНКАМ

- **Рис. 1.** Схематическое изображение времяпролетного спектрометра установки ИНЕС на нейтронном канале (N) источника РАДЭКС.
- **Рис. 2.** а Рассчитанный поток нейтронов $\Phi^{\text{th}}(E)$ и его аппроксимация зависимостью C/E^{α} в диапазоне 1–10⁵ эВ (показана сплошной линией); б измеренный поток нейтронов $\Phi^{\exp}(E)$ и его аппроксимация зависимостью $\Phi(E)$ в диапазоне 5–500 эВ (показана сплошной линией).
- Рис. 3. а Измеренная форма протонного импульса p_{exp}(t) и ее аппроксимация функцией p_{gex}(t) (показана сплошной кривой); б функция w(t) замедления нейтронов в мишени с энергией 150 эВ и ее аппроксимация асимметричной функцией Гаусса G(σ₁,σ₂) с σ₁ = t_s и σ₂ = 2t_s (показана сплошной кривой).
- **Рис. 4.** Расчетные формы $p_{\exp}^{w}(t)$ и $p_{gex}^{w}(t)$ нейтронного импульса с энергий 150 эВ с учетом функции замедления нейтронов в мишени соответственно для измеренной формы протонного импульса и полученной в результате ее аппроксимации асимметричной функцией Гаусса $G(\sigma_1, \sigma_2)$.
- **Рис. 5. а** Измеренный спектр (точки) и сечение взаимодействия нейтрона с ядром в реакции n, γ (сплошная синяя линия) в образце Au в диапазоне 100–550 мкс, внизу показаны интерактивные окна изменения параметров T_0 и L в формуле время–энергия; **б** – график соответствия пиков времяпролетного спектра и пиков в сечении взаимодействия нейтрона с ядром в реакции ¹⁹⁷Au(n, γ). По оси абсцисс отложено положение пика времяпролетного спектра, по оси ординат – соответствующая энергия пика в этом сечении. Сплошной черной кривой показана аппроксимация данных функцией $T = T_0 + 72.298 L/E^{1/2}$.
- **Рис. 6.** а Измеренные спектры с образцом Au (*C*_{Au}) и без него (*C*_{bg}), аппроксимация фона зависимостью *B*(*t*) для спектров *C*_{bg}(*t*) и *C*_{Au}(*t*) показана сплошными линиями; б измеренный спектр *C*_{Au}^{exp}(*t*) за вычетом фона в области времени пролета нейтрона 150–550 мкс.
- Рис. 7. а Пример взаимодействия нейтрона в образце с упругим многократным рассеянием (0, 1, 2) до радиационного поглощения ядром; б вероятность захвата нейтрона ядром Усар (Е) для процесса многократного упругого рассеяния Уms^{cap} и без него У0^{сар}.

- **Рис. 8.** а Поправочная функция $G_{ms}(E)$, учитывающая изменение энергии нейтрона вследствие многократного упругого рассеяния в образце для резонанса с энергией 4.9 эВ; **б** функция $G_{ms}(E)$ для резонансов с энергией меньше 280 эВ.
- **Рис. 9.** а Измеренный C_{Au}^{exp} и расчетный C_{Au}^{th} спектры с учетом поправочной функции G_{ms} для резонанса с энергией 4.9 эВ; б то же самое без учета поправочной функции.
- Рис. 10. а Измеренное σ_γ^{exp} и расчетное σ_γth сечения взаимодействия нейтрона с ядром в реакции n,γ в диапазоне 100–200 эВ для образца Au (1.065 мм) в эксперименте ИНЕС; б
 то же самое для образца Au (0.122 мм) в эксперименте n_TOF. Расчетное сечение радиационного захвата Au на основе данных ENDF/B-VIII.0 показано сплошной линией.

Рис. 1

Рис. 2.

Рис. 3.

Рис. 4.

Рис. 5

Рис. 6.

Рис. 7.

Рис. 8.

Рис. 9.

Рис. 10.