ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА, 2024, № 8 (Supplement-2)

ТЕХНИКА ЯДЕРНОГО ЭКСПЕРИМЕНТА

УДК 621.384.6

МОДЕЛИРОВАНИЕ ЭЛЕКТРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК УСКОРЯЮЩЕГО ДВУХЗАЗОРНОГО РЕЗОНАТОРА С ТРУБКАМИ ДРЕЙФА¹

©2024г. А. Л. Ситников^{*a*, *}, Д. Н. Селезнев^{*a*}, Г. Н. Кропачев^{*a*},

А. И. Семенников^{*a*}, Т. В. Кулевой^{*a*}, А. М. Опекунов^{*b*}, М. Л. Сметанин^{*b*}

^а Национальный исследовательский центр "Курчатовский институт" Россия, 117218, Москва, ул. Большая Черемушкинская, 25

^bВсероссийский научно-исследовательский институт экспериментальной физики

(ВНИИЭФ)

Россия, 607188, Нижегородская обл., г. Саров, пр. Мира, 37 *e-mail: aleksey.sitnikov@itep.ru

Поступила в редакцию 13.03.2024 г.

После доработки 18.03.2024 г.

Принята к публикации 11.04.2024 г.

В ККТЭФ НИЦ "Курчатовский Институт" ведутся работы по разработке линейного ускорителя (ЛУ) с отношением массы к заряду A/Z = 8, энергией 4 МэВ/н и током 10 мА. ЛУ состоит из ускорителя с пространственно-однородной квадрупольной фокусировкой (RFQ), работающего на частоте 40 МГц, и двух ускоряющих структур с трубками дрейфа DTL₁ и DTL₂, работающих соответственно на частотах 80 и 160 МГц. Предполагается, что ускоряющая структура _{DTL1} будет состоять из 12 двухзазорных четвертьволновых резонаторов.

1. ВВЕДЕНИЕ

Наиболее перспективной является схема, когда ускоритель состоит из двух секций: RFQ и DTL, между которыми осуществляется 6-мерное согласование пучка [1]. Секция DTL построена по модульному принципу и состоит из цепочки отдельных, индивидуально

¹ Материалы 28-й конференции по ускорителям заряженных частиц "RuPAC'23", Новосибирск.

фазируемых Н-резонаторов, с фокусировкой магнитными квадруполями, размещаемыми между ними. Такое построение DTL обеспечивает компактность ускорителя, допускает посекционную настройку и последовательный ввод в действие.

В данной работе представлен выбор ускоряющего двухзазорного резонатора с трубками дрейфа и представлены его электродинамические характеристики (ЭДХ).

2. ВЫБОР ПАРАМЕТРОВ РЕЗОНАТОРА DTL₁

Типичный вид четвертьволнового резонатора представлен на рис. 1. Форма корпуса резонатора DTL₁ была оптимизирована с точки зрения наибольшей собственной добротности, ВЧ-мощности собственных потерь и напряженности электрического поля на поверхности трубок дрейфа (см. табл. 1). Однако такая форма не позволяет разместить два резонатора ближе друг к другу, чем $|\Delta z| = 278$ мм. С учетом динамики пучка в ускорительном канале [2] расстояние между четвертьволновыми резонаторами должно быть не больше чем 200 мм.

В связи с этим было принято решение уменьшить диаметр основания корпуса резонатора (см. рис. 2). Это позволит разместить резонаторы максимально близко друг другу в положении, когда трубки дрейфа во всех резонаторах будут "висеть". ЭДХ четвертьволнового резонатора представлены в табл. 2. Как следует из табл. 2, собственная добротность и ВЧ-мощность собственных потерь резонатора, представленного на рис. 2, несколько хуже аналогичных параметров резонатора, представленного на рис. 1 (см. табл. 1). Это объясняется меньшим диаметром основания корпуса резонатора, а следовательно, и большей плотностью поверхностных токов.

Таблица	1.	ЭДХ	четвертьволнового	резонатор	ра
---------	----	-----	-------------------	-----------	----

Длина зазора, мм	31
Напряженность электрического поля на оси резонатора в центре зазора, кВ/см	80
Собственная добротность	12000
ВЧ-мощность собственных потерь, кВт	54

Рис. 1. Типичный вид двухзазорного четвертьволнового резонатора.

Рис. 2. Конструкция четвертьволнового резонатора с уменьшенным диаметром основания корпуса.

Длина зазора, мм	34
Напряженность электрического поля на оси резонатора в центре зазора, кВ/см	80
Собственная добротность	9600
ВЧ-мощность собственных потерь, кВт	60

Таблица 2. ЭДХ четвертьволнового резонатора конструкции

3. ТЕРМОМЕХАНИЧЕСКАЯ ДЕФОРМАЦИЯ РЕЗОНАТОРОВ DTL₁

Было проведено моделирования нагрева и его влияния на геометрические размеры резонаторов DTL₁. Моделирование проводилось при начальных условиях, представленных в табл. 3. Моделирование термомеханических деформаций резонаторов DTL₁ проводилось для резонаторов, выполненных из нержавеющей стали. Внутренняя часть резонатора покрыта слоем меди толщиной 40 мкм, шток и трубка дрейфа из полированной меди марки M06. Коэффициенты излучения различных элементов резонаторов DTL₁ представлены в табл. 4.

Таблица 3. Начальные данные для моделирования тепломеханических деформаций

Длительность ВЧ-импульса, мкс	300
Частота повторения ВЧ-импульсов, Гц	1
Скважность	3333
Температура окружающей среды, °С	20
Конвективный теплообмен с внешней средой, Вт/(м · К)	10

Таблица 4. Коэффициенты излучения различных элементов резонаторов DTL1

Внешняя поверхность резонатора	Полированная нержавеющая сталь	0.3
Внутренняя поверхность резонатора	Матовая медь	0.22
Шток и трубка дрейфа	Полированная медь	0.07

Был промоделирован первый и последний резонатор группы DTL₁. Значения импульсной и средней ВЧ-мощности резонаторов DTL₁ при разной длине ускоряющих зазоров g представлены в табл. 5.

Параметры	g = 34 MM	g = 48 MM
Напряженность на оси в центре ускоряющего зазора E_0 , кВ/см	80	80
Импульсная ВЧ-мощность P ₀ , кВт	60	90
Средняя ВЧ-мощность P_{cp} , Вт	18	27

Таблица 5. Импульсная и средняя ВЧ-мощность резонаторов DTL1

Результаты расчета нагрева резонатора DTL_1 с g = 34 мм представлены на рис. 3. Как видно на рис. 3, самое горячее место в резонаторе – это трубка дрейфа. Температура на трубке дрейфа составляет 39 °C и 47 °C для первого и последнего резонаторов соответственно.

Рис. 3. Нагрев резонаторов $DTL_1 c g = 34$ мм.

Термомеханические деформации резонатора DTL_1 с длиной ускоряющего зазора g = 34 мм показаны на рис. 4. Деформации резонатора с g = 48 мм имеют аналогичный вид. Данные по деформации резонаторов DTL_1 сведены в табл. 6, также там представлены данные по деформации резонатора DTL_1 с g = 34 мм без нагрева.

Рис. 4. Термомеханические деформации резонатора DTL_1 по оси *у* с *g* = 34 мм.

Оси	g = 34 мм (без нагрева)	<i>g</i> = 34 мм	g = 48 mm
Δx , MM	0.001	0.016	0.023
Δу, мм	0.027	0.241	0.342
Δz , MM	0.001	0.014	0.021

Таблица 6. Термомеханическая деформация резонаторов DTL₁

Как следует из табл. 6 деформация по оси *у* составляет 0.241 мм. Такое смещение трубки дрейфа неприемлемо, потому что оно больше требуемого допуска на юстировку резонатора и его нельзя компенсировать во время работы резонатора.

Для того чтобы охладить резонатор DTL₁ и, в частности шток и трубку дрейфа, необходимо предусмотреть канал охлаждения в штоке резонатора. В штоках трубки дрейфа резонаторов DTL₁ с g = 34 мм и g = 48 мм был сделан канал охлаждения с Ø10 мм и длиной 700 мм. Коэффициент принудительной водяной конвекции был взят минимальный и равный $\alpha = 300$ BT/(м·K). Результаты расчета нагрева резонатора DTL₁ с g = 34 мм с каналом водяного охлаждения штока трубки дрейфа представлены на рис. 5. Как видно на рис. 5, самое горячее место в резонаторе сместилось с трубки дрейфа на основание штока трубки дрейфа. Температура на трубке дрейфа составляет 21.6 °C и 22.4 °C для первого и последнего резонаторов соответственно. А температура основания штока трубки дрейфа – 22.1 °C и 23.1 °C соответственно.

Термомеханические деформации резонаторов DTL₁ с каналом охлаждения штоков трубок дрейфа представлены в табл. 7.

Оси	g = 34 MM	g = 48 MM
Δx , MM	0.0025	0.0036
Δу, мм	0.0481	0.0600
Δz , MM	0.0025	0.0037

Таблица 7. Термомеханическая деформация резонаторов DTL₁ с каналом охлаждения штоков трубок дрейфа

Из табл. 7 следует, что термомеханические деформации укладываются в допуск на юстировку резонатора. Однако данные деформации, возникающие в процессе работы, будут изменять ЭДХ резонаторов, в частности их резонансные частоты. Было проведено моделирование с целью оценки влияния термомеханических деформаций на изменение резонансной частоты резонаторов DTL₁. Так, резонансная частота изменяется на $\Delta f = 4$ кГц и на $\Delta f = 5$ кГц для резонаторов DTL₁ с g = 34 мм и g = 48 мм соответственно.

Рис. 5. Нагрев резонатора $DTL_1 c g = 34$ мм с каналом охлаждения штока трубки дрейфа.

4. ЗАКЛЮЧЕНИЕ

В работе представлен выбор формы резонаторов DTL₁, которая, с одной стороны, обеспечивает необходимые ЭДХ резонаторов, а с другой – позволяет разместить между резонаторами квадрупольные магнитные линзы. Также в работе обоснована необходимость обеспечить охлаждение штоков трубок дрейфа резонаторов группы DTL₁. Охлаждение необходимо, чтобы минимизировать термомеханические деформации. Изменение

резонансной частоты резонаторов группы DTL₁, вызванное термомеханическими деформациями, может быть компенсировано подстроечными плунжерами.

СПИСОК ЛИТЕРАТУРЫ

- Kropachev G., Kulevoy T., Sitnikov A. // Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2019. V. 13. № 6. P. 1126. http://doi.org/10.1134/S1027451019060399
- Кропачев Г.Н., Кулевой Т. В., Ситников А. Л., Скачков В. С., Хабибуллина Е. Р., Сметанин М. Л., Тельнов А. В., Завьялов Н. В. // Сибирский физический журнал. 2024. (принята к печати).

ПОДПИСИ К РИСУНКАМ

- Рис. 1. Типичный вид двухзазорного четвертьволнового резонатора.
- **Рис. 2.** Конструкция четвертьволнового резонатора с уменьшенным диаметром основания корпуса.
- **Рис. 3.** Нагрев резонаторов $DTL_1 c g = 34$ мм.
- **Рис. 4.** Термомеханические деформации резонатора DTL_1 по оси *y* с *g* = 34 мм.
- **Рис. 5.** Нагрев резонатора $DTL_1 c g = 34$ мм с каналом охлаждения штока трубки дрейфа.

Рис. 1.

Рис. 2.

Рис. 3.

Рис. 4.

Рис. 5.

Для связи с авторами:

Ситников Алексей Леонидович

aleksey.sitnikov@itep.ru

Селезнев Дмитрий

selesnev@itep.ru

Кропачев Геннадий

kropachev@itep.ru

Для переводчика:

THE RF PARAMETERS OF 2-GAPS DRIFT TUBE LINAC

A. L. Sitnikov¹, D. N. Selesnev¹, G. N. Kropachev¹, A. I. Semennikov¹, T. V.

Kulevoy¹ A. M. Opekunov², M. L. Smetanin²

¹NRC "Kurchatov Institute" KCTEP,

Moscow, Russia

²All-Russian Scientific Research Institute of Experimental Physics (VNIIEF),

Sarov, Nizhniy Novgorod Region, Russia

Abstract.

The linear accelerator (linac) with a mass-to-charge ratio of A/Z = 8, an energy of 4 MeV/n and a current of 10 mA is under develop at NRC Kurchatov Institute. The linac consists of an accelerator with radio frequency quadrupole (RFQ) operating at a frequency of 40 MHz, and two accelerating structures with drift tubes operating at frequencies of 80 and 160 MHz, respectively.

It is assumed that the accelerating structure of DTL_1 will consist of 12 2-gaps quarter-wave resonators.