ТЕХНИКА ЯДЕРНОГО ЭКСПЕРИМЕНТА

УДК 539.1.074

СЦИНТИЛЛЯЦИОННЫЕ ДЕТЕКТОРЫ CsI И SrI₂(Eu) CO СЪЕМОМ СИГНАЛА КРЕМНИЕВЫМИ ФОТОУМНОЖИТЕЛЯМИ С ПОРОГОМ РЕГИСТРАЦИИ НИЖЕ 200 эВ

©2024 г. А. Г. Баранов^{a,b,*}, А. П. Ивашкин^{a,c,+}, С. А. Мусин^{a,c,+}, Г. Х. Салахутдинов^{b,**}, А. О. Стрижак^{a,c,+}

^аИнститут ядерных исследований Российской академии наук Россия, 108840, Москва, Троицк, ул. Физическая, 27

^bНациональный исследовательский ядерный университет "МИФИ" Россия, 115409, Москва, Каширское шоссе, 31

^cМосковский физико-технический институт (Национальный исследовательский университет)

*e-mail: baranov@inr.ru **e-mail: saip07@mail.ru

Россия, 141701, Долгопрудный, Московская обл., Институтский пер., 9

Поступила в редакцию 22.03.2024 г. После доработки 07.05.2024 г. Принята к публикации 21.06.2024 г.

Обсуждаются концепции детекторов из неорганических сцинтилляторов CsI(pure) и SrI₂(Eu) со съемом светового сигнала матрицами кремниевых фотоумножителей. Данные детекторы предполагается использовать при низких температурах для регистрации сигналов со сверхнизким энерговыделением. Приводятся результаты измерения светосбора прототипов детекторов. Получены удельные светосборы на уровне 30–40 фотоэлектронов на один кэВ выделенной в детекторах энергии. Исследованы зависимости тепловых шумов и оптической связи кремниевых фотоумножителей от температуры. Показано, что использование детекторов при отрицательных температурах позволяет эффективно подавить шумы фотодетекторов и обеспечить порог регистрации на уровне нескольких фотоэлектронов. Данные детекторы могут быть востребованы в различных фундаментальных и прикладных областях, в частности, в физике низкоэнергетичных нейтрино.

1. ВВЕДЕНИЕ

Важнейшими задачами современной физики элементарных частиц являются исследования когерентного рассеяния реакторных нейтрино на ядрах и детектирование низкоэнергетичных нейтрино из бета-распадов различных радиоизотопов. В обоих случаях в детекторах нейтрино будет выделяться энергия около или значительно ниже 1 кэВ. Кроме того, поиск магнитного момента нейтрино также требует регистрации сверхнизких энергий отдачи электронов. Так в эксперименте по поиску магнитного момента с использованием тритиевого источника [1] энергия нейтрино не превышает 18 кэВ, а энергия отдачи электронов при взаимодействии соответствующих нейтрино в детекторе будет меньше 1 кэВ.

В качестве детекторов нейтрино с порогом регистрации ниже 1 кэВ в основном рассматриваются благородные газы при низких температурах. Наиболее перспективными считаются детекторы на основе жидкого ксенона, которые уже работают или создаются в экспериментах RED100[2], COHERENT [3], XENONnT и др. В новых проектах экспериментов CoGeNT [4], GEMMA [5], COHERENT [3] в качестве альтернативы рассматриваются криогенные полупроводниковые детекторы на основе германия. В будущем эксперименте по поиску магнитного момента нейтрино [1] предлагается использовать сразу несколько вариантов детекторов из жидкого гелия, кремния и неорганических сцинтилляторов. Использование неорганических сцинтилляторов с уникально высоким световым выходом и сравнительно небольшим размером, а также современных кремниевых фотоумножителей с высокой квантовой эффективностью регистрации света позволяет создавать отдельные детекторные модули с порогом регистрации энергии 100–200 эВ.

В последние годы появилось несколько работ с предложением в качестве детекторов со сверхнизким порогом регистрации использовать неорганические сцинтилляторы из чистого иодида цезия CsI(pure) без добавления активатора. Первые измерения, проведенные около двадцати лет назад, указывают на уникальный световой выход этих сцинтилляторов, работающих при температуре жидкого азота. Например, в работе [6] показано, что при температурах ниже 100 К световой выход кристалла CsI(pure) достигает 120 тыс. фотонов/МэВ. В недавней работе [7] представлены измерения небольшого прототипа CsI(pure) детектора с использованием одного криогенного фотоэлектронного умножителя (ФЭУ). Авторами получен удельный светосбор около 33 фотоэлектронов/кэВ. В этой же работе предложен детектор нейтрино с использованием CsI(pure) сцинтиллятора размером 10×10×10 см³ и матриц кремниевых фотоумножителей (SiPM), размещенных с

двух противоположных сторон кристалла. Моделирование распространения света в таком детекторе указывает на возможность получения удельного светосбора около 50 фотоэлектронов/кэВ и порога регистрации около 40 эВ в электронном эквиваленте энерговыделения. Получены указания, что для этого типа сцинтиллятора энергия отдачи ядра также может быть измерена с порогом 40 эВ. В этом случае возможна регистрация когерентного рассеяния нейтрино с энергией порядка 1 МэВ. Однако в другой работе [8] показано, что эквивалентное энерговыделение от отдачи ядра будет почти на порядок меньше, чем от электрона отдачи, что приводит к порогу регистрации ядра отдачи около 400 эВ.

Несмотря на то, что в приведенных выше работах по исследованию образцов CsI(рure) сцинтилляторов использовались классические вакуумные фотоэлектронные умножители (ФЭУ), авторы предлагают использовать кремниевые фотоумножители (SiPM) в реальных детекторах. Данный выбор фотодетекторов обусловлен несколькими факторами. В частности, принципиальный фактор связан с радиационной чистотой SiPM, в то время как в фотокатодах ФЭУ имеется примесь радиоактивного изотопа калия ⁴⁰К, имитирующего полезный сигнал в детекторе. Компактность и относительная дешевизна кремниевых фотоумножителей позволяет создавать матрицы фотодетекторов с требуемыми размерами и конфигурациями. Квантовая эффективность регистрации света коммерчески доступных SiPM достигает 50%, что примерно в 2 раза превышает значение этого параметра для традиционных ФЭУ.

Существенным недостатком кремниевых фотоумножителей является их тепловой шум, порядка 100 кГц/мм² при комнатных температурах. Однако этот недостаток можно компенсировать эксплуатацией фотодетекторов при криогенных температурах. Так, при температуре жидкого азота уровень шума падает на несколько порядков [9] и достигает 0.2 Гц/мм², что позволяет регистрировать предельно низкие световые сигналы на уровне нескольких фотонов.

2. ПАРАМЕТРЫ ПРОТОТИПОВ CSI(PURE) СЦИНТИЛЛЯЦИОННЫХ ДЕТЕКТОРОВ

С целью определения величины удельного светосбора со сцинтилляторов CsI(pure) со съемом светового сигнала с помощью SiPM нами были проведены измерения нескольких образцов таких кристаллов с использованием матриц кремниевых фотоумножителей MPPCS14161-3050HS-04 фирмы Hamamatsu (Япония). В работе использовались CsI(pure) кристаллы размером $15 \times 15 \times 15$ мм 3 и $15 \times 15 \times 25$ мм 3 производства Института

неорганической химии (ИНХ РАН, Новосибирск). Боковые грани кристаллов были обернуты отражателем из фторопластовой ленты, а две матрицы фотодетекторов были размещены с противоположных торцов сцинтиллятора. Сцинтилляторы вместе с фотодиодными матрицами были помещены непосредственно в термостат с жидким азотом. Сигнал с фотодетекторов усиливался и формировался усилителем, размещенным непосредственно рядом с детектором, но вне объема с жидким азотом.

Амплитудная калибровка SiPM выполнялась по спектру шумовых сигналов SiPM, показанным на рис.1а. Как видно, амплитудный спектр представляет собой набор пиков, соответствующим различному количеству фотоэлектронов. Расстояние между соседними пиками соответствует амплитуде одноэлектронного импульса и равно 6000 каналам АЦП. Спектр амплитуд от гамма-квантов источника ⁵⁷Со показан на рисунке 1б. Легко видеть, что амплитуда сигнала с одной SiPM-матрицы соответствует 18 фотоэлектронам/кэВ, что эквивалентно 36 фотоэлектронам/кэВ для суммы сигналов с двух фотодетекторов, размещенных на противоположных гранях сцинтиллятора CsI(pure).

Рис.1. Амплитудные спектры шумов (**a**) и гамма-излучения от источника 57 Co (**б**), полученные при измерениях на сцинтилляторе CsI(pure) размером $15 \times 15 \times 15$ мм³.

В случае использования сцинтиллятора большего размера (15×15×25 мм³) удельный светосборс одного фотодетектора составил около 15 фотоэлектронов/кэВ или эквивалентно 30 фотоэлектронов/кэВ для случая двух матриц кремниевых фотоумножителей. Таким образом, увеличение объема сцинтиллятора почти в 2 раза привело к уменьшению светосбора на 20%, что является достаточно оптимистичным результатом. С учетом размеров сцинтилляторов CsI(pure) и фотодетекторов полученный светосбор со съемом светового сигнала кремниевыми фотоумножителями сравним со светосбором, использующим традиционные вакуумные ФЭУ.

Чтобы убедиться в возможности регистрации сигналов на уровне нескольких фотоэлектронов, были проведены измерения уровня шума SiPM при температуре жидкого азота. На рис. 2 приведены зависимости частоты шума от порога регистрации при различных значениях перенапряжения (разницы между приложенным напряжением и напряжением пробоя). Как видно, в зависимости от величины перенапряжения и порога регистрации уровень шума составляет от 0.01 Гц/мм² до 0.1 Гц/мм². Для коммерчески доступных матриц кремниевых фотоумножителей с размером активной области около 150 мм² суммарный тепловой шум составит несколько герц. Дополнительная временная обработка сигналов, например требование совпадения сигналов в двух SiPM-матрицах с

противоположных сторон сцинтиллятора, может подавить шум до пренебрежимо малого уровня, что позволит измерять сигналы с порогом регистрации на уровне нескольких фотоэлектронов.

Рис.2. Зависимость частоты теплового шума от порога регистрации при различных значениях перенапряжения на кремниевом фотоумножителе.

Таким образом, использование сцинтилляторов CsI(pure) кремниевых фотоумножителей при температуре жидкого азота позволяет создавать детекторы с порогом регистрации в несколько фотоэлектронов, что, с учетом полученного удельного светосбора 30-40 фотоэлектронов/кэВ, эквивалентно энергетическому порогу от 100 эВ. Однако дальнейшие исследования выявили ряд проблем в использовании такого детектора. Во-первых, полученный светосбор не был скорректирован на величину оптической связи кремниевых фотоумножителей, которая может достигать 100% при температуре жидкого азота [10], т.е. скорректированный светосбор может быть в 2 раза меньше. Во-вторых, работа нескольких типов SiPM достаточно неустойчива при этой температуре, в частности, из-за вымораживания носителей заряда в полупроводниках при температуре менее -100°C. В-третьих, при температуре жидкого азота спектр излучения сцинтиллятора CsI(pure) смещается в ультрафиолетовую область 350 нм, где квантовая эффективность фотодетекторов резко падает. В-четвертых, при таких температурах не существует материалов, обеспечивающих оптический контакт между сцинтиллятором фотодетектором, а воздушный контакт приводит к значительной (десяткам процентов) потере света. Наконец, сцинтиллятор CsI(pure) обладает внутренней радиоактивностью изза наличия изотопа ¹³⁷Cs, концентрация которого зависит от места извлечения сырья для изготовления сцинтиллятора, и не может быть уменьшена химическими методами очистки сырья [11, 12]. Таким образом, использование сцинтилляторов CsI(pure) при температурах жидкого азота имеет ряд существенных недостатков, которые напрямую сказываются как на энергетическом пороге регистрации, так и на чувствительности детектора к измеряемому эффекту. Данных недостатков можно избежать, если использовать низкофоновый сцинтиллятор, имеющий сравнимую величину световыхода при более высоких температурах эксплуатации.

3. SrI₂(Eu) СЦИНТИЛЛЯЦИОННЫЙ ДЕТЕКТОР

В последние годы началось активное использование перспективного сцинтиллятора $SrI_2(Eu)$, который имеет рекордный световой выход порядка 120 000 фотонов/МэВ уже при

комнатной температуре [13]. Уникальное энергетическое разрешение SrI(Eu) сцинтилляторов [14] (ниже 3% для 662 кэВ линии гамма-источника ¹³⁷Cs) и высокая эффективность регистрации гамма-квантов обусловили коммерческое использование SrI₂(Eu) для идентификации изотопов в различных прикладных исследованиях. По сравнению с CsI(pure) сцинтиллятор SrI₂(Eu) не имеет собственной внутренней радиоактивности [15], что позволяет проводить низкофоновые измерения. Максимум в спектре излучения сцинтиллятора, равный 420 нм, соответствует максимальной квантовой чувствительности как традиционных вакуумных, так и кремниевых фотоумножителей. Такие уникальные свойства $SrI_2(Eu)$ сцинтилляторов открывают перспективы их использования в качестве детекторов нейтрино со сверхнизким порогом регистрации.

В настоящее время существует ряд коммерчесих SrI₂(Eu) детекторов со съемом сигнала кремниевыми фотоумножителями. Чтобы проверить возможность использования таких детекторов с порогом регистрации ниже 1 кэВ, нами был исследован один из таких детекторов производства компании CapeScint (США) с кубическим SrI₂(Eu) сцинтиллятором размером 13×13×13 мм³. Сцинтиллятор считывался матрицей из четырех SiPMARRAYJ-60035-64P производства компании Sensl (США). В работе использовались такие же усилитель сигналов и считывающая электроника, как и при изучении детекторов на основе CsI(pure) сцинтиллятора.

Исследование концепции работы SrI₂(Eu) детектора при сверхнизком энергетическом пороге регистрации проводилось в два этапа. На первом этапе исследовались светосбор и отклик самого детектора к гаммма-квантам низких энергий. Отметим, что эксплуатация детектора предполагается при температурах до -60°C. Как показано в работе [9], при этой температуре достигается наиболее резкий спад тепловых шумов кремниевых фотоумножителей. В то же время частота тепловых шумов кремниевых фотоумножителей при температуре -60°C не является оптимальной и требует дополнительного подавления.

На рис. 3 слева показан спектр шумов фотодиодной матрицы с четко выраженными пиками, соответствующими дискретной структуре амплитуды шумов. Данный спектр используется для амплитудной калибровки детектора, поскольку расстояние между соседними пиками соответствует одному фотоэлектрону. На соседнем рисунке представлен амплитудный спектр сигналов с детектора, полученный при его облучении гамма-источником ²⁴¹Ат. Самый правый пик в спектре соответствует энерговыделению 60 кэВ, для которого количество фотоэлектронов равно 2137 ф.э. Таким образом, удельный светосбор сцинтилляционного детектора SrI₂(Eu) составляет 35.6 ф.э./кэВ.

Рис. 3. Амплитудные спектры шумов SiPM матрицы (слева) и гамма-излучения от источника 241 Am (справа) для сцинтиллятора SrI₂(Eu) размером $13 \times 13 \times 13$ мм³.

4. ТЕМПЕРАТУРНЫЕ ХАРАКТЕРИСТИКИ КРЕМНИЕВЫХ ФОТОУМНОЖИТЕЛЕЙ

На втором этапе исследовались температурные параметры SiPM матрицы ARRAYJ-60035-64P, используемой в детекторе SrI₂(Eu), а именно, частота тепловых шумов и величина оптической связи в кремниевых фотоумножителях, которая приводит к завышенной величине регистрируемого сигнала из-за паразитного срабатывания нескольких пикселей при регистрации всего одного фотона. В обоих типах измерений использовались низкоамплитудные спектры сигналов с SiPM-матрицы, набранные при облучении фотодетектора сверхслабыми световыми вспышками от светодиода. Примеры таких спектров для двух температур окружающей среды показаны на рис. 4. Здесь первый пик в спектре соответствует пьедесталу (базовой линии) АЦП, а последующие пики, расположенные на равных расстояниях друг от друга, соответствуют амплитудам сигналов, различающимся на один фотоэлектрон.

Рис. 4. Низкоамплитудные спектры сигналов с SiPM-матрицы...

Представленные на рис. 4 спектры позволяют легко выполнить амплитудную калибровку фотодетектора, используемую при исследовании зависимости интенсивности тепловых шумов от температуры SiPM-матрицы. Зависимость частоты шума от температуры SiPM при нескольких амплитудных порогах регистрации сигнала представлена на рис. 5. Как видно, охлаждение фотодетектора от комнатной температуры до -65°С позволяет уменьшить интенсивность тепловых шумов почти на 3 порядка. Тем не менее, при пороге регистрации 0.5 фотоэлектрона (учитывается шум на уровне одного фотоэлектрона) минимальная частота шума составляет около 30 Гц, что более, чем на порядок превышает аналогичный шум при температуре жидкого азота. Поскольку в SiPM-матрице используются четыре индивидуальных фотодиода, можно потребовать одновременную регистрацию в нескольких фотодиодах, а также наличие нескольких одноэлектронных сигналов в одном фотодиоде. Согласно оценкам, такой временной анализ сигналов позволит дополнительно подавить тепловые шумы на три и более порядка и минимизировать их влияние на полезные сигналы.

Рис. 5. Зависимость частоты тепловых шумов от температуры SiPM для разных амплитудных порогов регистрации при величине перенапряжения 3.5 В.

Измерить величину оптической связи можно с помощью амплитудного спектра от слабых световых импульсов с использованием свойств распределения Пуассона и количества пьедестальных событий, см. рис. 4. Среднюю амплитуду спектра $N_{p.e.}^{\rm det}$ на рис. 4, выраженную в количестве фотоэлектронов, легко определить, выполнив амплитудную калибровку шкалы АЦП. С другой стороны, распределение Пуассона дает среднюю величину

$$N_{p.e.}^{init} = \ln \frac{N_{tot}}{N_{ped}},$$

где N_{tot} – полное количество событий в спектре, а N_{ped} – количество событий в пьедестале.

Разница в средних значениях, определенных двумя способами, обусловлена отклонением амплитудных распределений от пуассоновских, вызванным наличием исследуемого эффекта. Величина оптической связи будет определена как

$$Cr.T. = \frac{N_{p.e.}^{\text{det}} - N_{p.e.}^{\text{init}}}{N_{p.e.}^{\text{init}}}$$

Температурная зависимость величины оптической связи между пикселями SiPM представлена на рис. 6 для двух значений перенапряжения 3.5 В и 4.5 В. Как видно, оптическая связь растет с понижением температуры и достигает 20–27% в зависимости от напряжения на фотодетекторе.

Рис. 6. Зависимость величины оптической связи между пикселями SiPM от температуры фотодетектора...

Таким образом, чтобы получить корректное значение удельного светосбора, нужно измеренное значение скорректировать на величину оптической связи. В случае работы фотодетектора с пониженным напряжением коррекция достигает 20%.

5. ЗАКЛЮЧЕНИЕ

В данной работе выполнены измерения несколько прототипов детекторов нейтрино со сверхнизким энергетическим порогом регистрации на основе двух типов неорганических сцинтилляторов с уникально высоким световым выходом. Съем светового сигнала со сцинтилляторов осуществлялся матрицами кремниевых фотоумножителей.

Сцинтиллятор CsI(pure) размером 15×15×15 мм³ при считывании света двумя фотодетекторами с противоположных сторон кристалла и при температуре жидкого азота показал удельный светосбор около 18 фотоэлектронов/кэВ с одной SiPM-матрицы, что соответствует 36 фотоэлектронам/кэВ для суммы сигналов с двух фотодетекторов.

Детектор объемом почти в два раза больше и размером 15×15×25 мм³ имеет на 20% меньший светосбор, равный 30 фотоэлектронов/кэВ. Отметим, что полученный светосбор не был скорректирован на величину оптической связи между пикселями SiPM, которая может достигать 100% при температуре жидкого азота.

В связи с технологическими сложностями работы при криогенных температурах, смещением спектра излучения CsI(pure) сцинтиллятора в ультрафиолетовую область и неоптимальными параметрами кремниевых фотоумножителей при этих температурах нами было предложено использовать перспективный сцинтиллятор SrI₂(Eu), имеющий уникальный световой выход более 120000 фотонов/МэВ уже при комнатной температуре. Для снижения частоты тепловых шумов фотодетекторов в виде компромисса предложена эксплуатация детектора при умеренно низких температурах, около -60°С. Было показано, что при этой температуре шумы кремниевых фотоумножителей уменьшились на три порядка. За счет временного анализа сигналов с матриц фотодетекторов возможно дополнительное подавление шумов на три порядка, что позволяет регистрировать полезный сигнал на уровне в несколько фотоэлектронов. Измерения коммерческого SrI₂(Eu) показали, что удельный светосбор одной матрицей кремниевых фотоумножителей составляет около 40 фотоэлектронов/кэВ до коррекции на величину оптической связи и около 30 фотоэлектронов/кэВ после коррекции. Это позволит регистрировать полезные сигналы с энергетическим порогом 100–200 эВ.

Таким образом, использование перспективных неорганических сцинтилляторов с уникально высоким световыходом и большой плотностью дает возможность создавать небольшие модули детекторов нейтрино с требуемым порогом регистрации. Полноценный детектор нейтрино весом в десятки и даже сотни килограмм может быть составлен из таких индивидуальных модулей. Такие детекторы могут быть хорошей альтернативой других типов детекторов нейтрино, созданных на основе благородных газов или полупроводников.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено в рамках научной программы Национального центра физики и математики, направление № 8 «Физика изотопов водорода».

СПИСОК ЛИТЕРАТУРЫ

- 1. *Юхимчук А.А.*, *Голубков А.Н.*, *Максимкин И.П. и др.* // Физмат. 2023. Т. 1. №1. С. 5. https://doi.org/10.56304/S2949609823010057
- Akimov D., Berdnikova A., Belov V. et al. // J. Phys. Conf. Ser. 2016. V. 675. P. 012016. https://doi.org/10.1088/1742-6596/675/1/012016
- 3. Collar J.I., Fields N.E., Hai M., Hossbach T.W., Orrell J.L., Overman C.T., Perumpilly G., Scholz B. // Nucl. Instrum. Meth. 2015. V. 773. P. 56. https://doi.org/10.1016/j.nima.2014.11.037
- 4. *Aalseth C.E., Barbeau P.S., Colaresi J. et al.* // Phys. Rev. 2013. V. 88. P. 012002. https://doi.org/10.1103/PhysRevD.88.012002
- 5. BedaA G., Brudanin V.B., Egorov V.G., Medvedev D.V., Shirchenko M.V., Starostin A.S. // Phys. Part. Nuclei Lett. 2010. V. 7. P. 406. https://doi.org/10.1134/S1547477110060063.
- 6. *Moszynski M, Balcerzyk M., Czarnacki W. //* NIM. 2005. V. 537. P. 357. https://doi.org/10.1016/j.nima.2004.08.043
- 7. *Ding K., Chernyak D., Liu J. //* Eur. Phys. J. C. 2020. V. 80. P. 1146. https://doi.org/10.1140/epjc/s10052-020-08712-2
- 8. *Lewis C.M.*, *Collar J.I.* // Phys. Rev. C. 2021. V. 104. P. 014612. https://doi.org/10.1103/PhysRevC.104.014612
- Liu F., Fan X., SunX., Liu B., Li J., Deng Y., Jiang H., Jiang T., Yan P. // Sensors. 2022.
 V. 22. P. 1099. https://doi.org/10.3390/s22031099
- 10. *Boulay M.G.*, *Camillo V.*, *Canci N. et al.* // Front. Phys. 2023. V. 11. https://doi.org/10.3389/fphy.2023.1181400
- 11. *Kim Y.D.*, *Hahn I.S.*, *Hwang M.J. et al.* // Nucl. Instrum. Methods. Phys. Res. A. 2005. V. 552. № 3. P. 456. https://doi.org/10.1016/j.nima.2005.06.080
- 12. *Lee H.S. et al. (KIMS Collaboration)* // Physics Letters B. 2006. V. 633. № 2–3. P. 201. https://doi.org/10.1016/j.physletb.2005.12.035
- 13. *Takabe M., Kishimoto A., Kataoka J., Sakuragi S., Yamasaki Y. //* Nucl. Instrum. Methods. Phys. Res. A. 2016. V. 831. P. 260. https://doi.org/10.1016/j.nima.2016.04.043
- 14. *Alekhin M.S., Khodyuk I.V., de Haas J.T.M., Dorenbos P.* // IEEE Transactions on Nuclear Science. 2012. V. 59. № 3. P. 665. https://doi.org/10.1109/TNS.2012.2188544
- Belli P., Bernabei R., Cerulli R. et al. // Nucl. Instrum. Methods. Phys. Res. A. 2012. V. 670.
 P. 10. https://doi.org/10.1016/j.nima.2011.12.051

ПОДПИСИ К РИСУНКАМ

- **Рис. 1.** Амплитудные спектры шумов **(а)** и гамма-излучения от источника 57 Co **(б)**, полученные при измерениях на сцинтилляторе CsI(pure) размером $15 \times 15 \times 15$ мм³.
- **Рис. 2.** Зависимость частоты теплового шума от порога регистрации при различных значениях перенапряжения на кремниевом фотоумножителе.
- **Рис. 3.** Амплитудные спектры шумов SiPM-матрицы (слева) и гамма-излучения от источника 241 Am (справа) для сцинтиллятора SrI₂(Eu) размером $13\times13\times13$ мм³.
- **Рис. 4.** Низкоамплитудные спектры сигналов с SiPM-матрицы при температуре +6°C (слева) и -65 °C (справа).
- **Рис. 5.** Зависимость частоты тепловых шумов от температуры SiPM для разных амплитудных порогов регистрации при величине перенапряжения 3.5 В. Синие, красные и желтые точки соответствуют порогам регистрации сигналов 0.5, 1.5 и 2.5 фотоэлектронам соответственно. Вставка в верхнем левом углу показывает данные зависимости при минимальных температурах в крупном масштабе.
- **Рис. 6.** Зависимость величины оптической связи между пикселями SiPM от температуры фотодетектора при для двух значений перенапряжения 3.5 В (красные точки) и 4.5 В (синие точки).

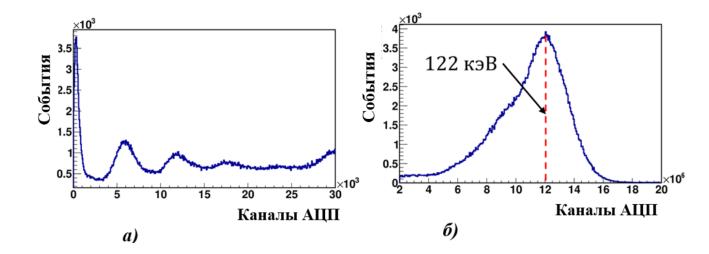


Рис. 1.

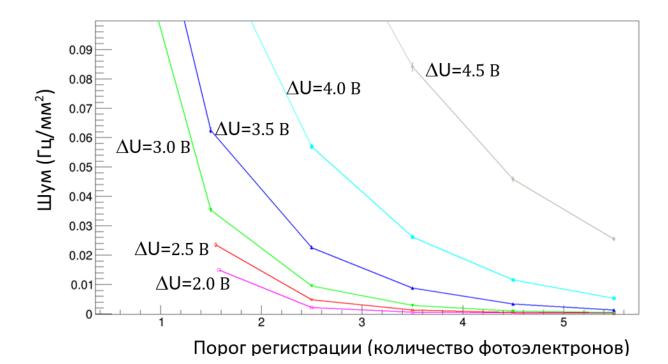


Рис. 2.

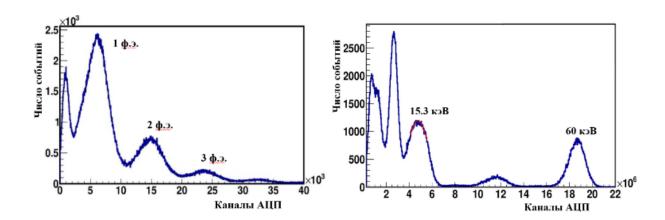


Рис. 3.

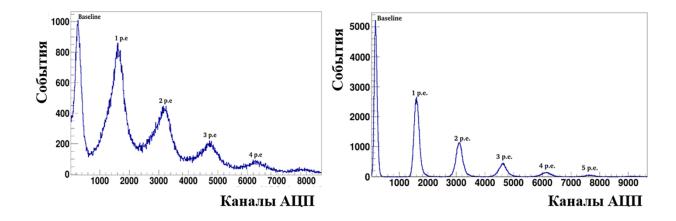


Рис. 4.

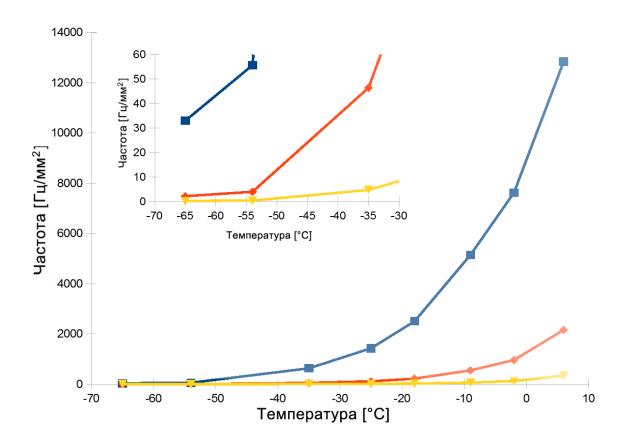


Рис. 5.

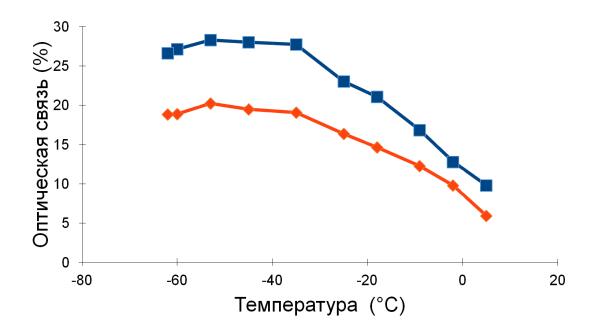


Рис. 6.

Для связи с авторами:

Салахутдинов Гаяр Харисович

Тел.: 8(915)087-14-93 (моб.)

E-mail: saip07@mail.ru

Для переводчика:

CsI AND SrI2(Eu) SCINTILLATION DETECTORS WITH SIGNAL REMOVAL BY SILICON PHOTOMULTIPLIERS WITH A REGISTRATION THRESHOLD BELOW 200 eV

©2024 A. G. Baranov^{1,2}, A. P. Ivashkin¹, S. A. Musin^{1,3}, G. Kh. Salakhutdinov², A. O. Strizhak^{1,3}

¹Institute of Nuclear Research of the Russian Academy of Sciences

Russia, 108840, Moscow, Troitsk, Fizicheskaya str., 27

²National Research Nuclear University "MEPhI"

31 Kashirskoe shosse, Moscow, 115409, Russia

³Moscow Institute of Physics and Technology

(National Research University)

Russia, 141701, Moscow region, Dolgoprudny, Institutsky Lane, 9
*e-mail: baranov@inr.ru

Abstract The article discusses the concepts of detectors made of inorganic scintillators CsI(pure) and SrI2(Eu) with light signal removal by silicon photomultiplier matrices. These detectors are supposed to be used at low temperatures to register signals with ultra-low energy release. The results of measuring the light collection of detector prototypes are presented. Specific light collections were obtained at the level of 30-40 photoelectrons per keV of energy released in the detectors. The dependences of thermal noise and optical coupling of silicon photomultipliers on temperature are investigated. It is shown that the use of detectors at negative temperatures makes it possible to effectively suppress the noise of photodetectors and provide a registration threshold at the level of several photoelectrons. These detectors can be in demand in various fundamental and applied fields, in particular, in the physics of low-energy neutrinos.

Keywords: detector, scintillators CsI(pure) and SrI₂(Eu), silicon photomultiplier matrices, photoelectrons, low temperature, low-energy neutrinos.