

УДК 621.039.63

УСТРОЙСТВО ВВОДА СВЧ-МОЩНОСТИ В РАЗРЯДНУЮ КАМЕРУ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

© 2024 г. В. Н. Тихонов^{*a*}, С. А. Горбатов^{*a*}, ^{*}, И.А. Иванов^{*a*}, А.В. Тихонов^{*a*}

^аВсероссийский научно-исследовательский институт радиологии и агроэкологии

Национального исследовательского центра "Курчатовский институт"

Россия, 249032, Обнинск, Калужская обл., Киевское шоссе, 1, к. 1

*e-mail: gorbatovsa004@gmail.com

Поступила в редакцию 7.12.2023 г. После доработки 19.06.2024 г. Принята к публикации 25.06.2024 г.

Описана система ввода сверхвысокочастотной (СВЧ) мощности в вакуумную камеру токамака для предионизации находящейся там газовой среды с целью облегчения последующего разряда в ней. Рассмотрены три основные проблемы, возникающие при этом, предложен путь их решения. Построена расчетная модель электромагнитной структуры, включая преобразователь типов колебаний, диэлектрический трансформатор и узел гальванической развязки, проведена оптимизация всех геометрических параметров. Устройство реализовано "в металле", вся волноводная система выполнена из немагнитной нержавеющей стали. Описанное устройство ввода СВЧ-мощности в настоящее время используется на учебно-демонстрационном токамаке МИФИ.

1. ВВЕДЕНИЕ

Предионизация используется в качестве обязательной части сценария разряда в вакуумной камере токамаков, сооружаемых и действующих во многих странах мира в ходе широкой международной кооперации по созданию научно-технических основ термоядерной энергетики [1]. Применение сверхвысокочастотной (СВЧ) предионизации на частоте электронно-циклотронного резонанса – простой и надежный способ решения вопроса. Проблема состоит в том, что, во-первых, вакуумное окно камеры имеет цилиндрическую форму, а выход СВЧ-генератора – прямоугольный волновод; во-вторых, диэлектрическая проницаемость вакуумного окна существенно больше единицы, к тому же металлические мембраны его крепления также представляют значительную неоднородность для распространения электромагнитной волны; в-третьих, питающий волноводный тракт и разрядная камера токамака должны быть гальванически развязаны.

2. ПОСТРОЕНИЕ И ОПТИМИЗАЦИЯ РАСЧЕТНОЙ МОДЕЛИ

2.1. Материалы и методы

Построение расчетной модели, расчет электродинамических параметров, оптимизация конфигурации и геометрических размеров элементов волноводного тракта проводились с помощью программы Ansys High Frequency Structure Simulator (HFSS) [2].

2.2. Преобразователь типов колебаний

Выход СВЧ-генератора представляет собой одномодовый (H₁₀) прямоугольный волновод сечением 110 × 55 мм². Диаметр патрубка крепления вакуумного окна составляет 155 мм, в нем может распространяться 5 мод электромагнитных колебаний на частоте 2.45 ГГц. Между ними был размещен согласующий трансформатор/преобразователь в виде отрезка прямоугольного волновода с увеличенным размером по узкой стенке (рис. 1).

Рис. 1. Преобразователь типов колебаний.

В результате проведенной оптимизации размеров трансформатора получены следующие значения: длина "ступеньки" – 100 мм, высота волновода – 94 мм. Расчетные параметры согласования такого преобразователя приведены на рис. 2.

Рис. 2. Частотная характеристика коэффициента стоячей волны (КСВ) преобразователя типов колебаний.

2.3. Согласование тракта с вакуумным окном

Вакуумное окно выполняется, как правило, из радиопрозрачного материала с высокой диэлектрической проницаемостью. Кроме того, металлическая мембрана крепления окна к фланцу представляет собой весьма существенную неоднородность для волновода, которая также вызывает значительные отражения волны. Для компенсации отражений был использован так называемый диэлектрический трансформатор, выполненный из фторопласта (рис. 3).

Рис. 3. Часть сечения электромагнитной модели трансформатора (1) для "просветления" вакуумного окна (2), линия протекания поверхностных токов (3). Толщина трансформатора (18.6 мм) и его расположение относительно окна (11 мм от поверхности стекла) были выбраны в результате двухпараметрической оптимизации. Расчетный КСВ волноводного тракта в этом месте составил порядка 1.2–1.25.

2.4. Гальваническая развязка

Поскольку вакуумная камера должна находиться под "плавающим" потенциалом или же быть соединена с "диагностической землей", а магнетрон вместе с питающим волноводом – с "силовой землей", между ними должна быть предусмотрена гальваническая развязка. Для подавления СВЧ-излучения во внешнюю среду было продумано так называемое дроссельное сочленение в месте гальванического разрыва волноводного тракта. Поскольку это сочленение выполнено в цилиндрической части тракта, появилась возможность сделать его подвижным, что позволяет подстраивать длину волновода от магнетрона до камеры и поворачивать плоскость поляризации бегущей волны для улучшения согласования СВЧ-генератора с нагрузкой. На рис. 4 представлена часть продольного сечения расчетной модели дроссельно-го сочленения с распределением амплитуды электрической составляющей электромагнитно-го поля в волноводе. Внутренний диаметр дроссельной канавки – 94 мм, наружный диаметр запирающего кольца – 91 мм, продольные размеры дросселя не столь критичны, они могут быть выбраны из конструктивных соображений.

Рис. 4. Дроссельное сочленение. Область гальванической развязки отмечена стрелкой.

Как видно на рис. 4, в области разрыва проводящей поверхности (это место отмечено стрелкой) амплитуда поля близка к нулю. Модельный расчет внешних полей показывает, что при прохождении по волноводному тракту электромагнитной волны мощностью 3 кВт излучение во внешнюю среду не должно превышать 1.5 Вт.

3. ПРАКТИЧЕСКАЯ РЕАЛИЗАЦИЯ ПРОЕКТА

3.1. Общая схема устройства ввода мощности

На рис. 5 представлена общая схема устройства ввода СВЧ-мощности.

Рис. 5. Общая схема устройства ввода СВЧ-мощности.

Выход СВЧ-генератора *1* (см. рис. 5) через дистанцирующий волновод *2* подключен к преобразователю мод *3*. Выходная часть преобразователя *3* имеет форму цилиндра, на по-

верхности которого размещен изолирующий слой диэлектрика 4 (фторопласт), обеспечивающий гальваническую развязку с патрубком 5, на входном торце которого имеется дроссельное сочленение, препятствующее излучению СВЧ-энергии во внешнюю среду. Патрубок 5 крепится фланцевым соединением к диагностическому входу разрядной камеры 6. Для согласования неоднородности тракта, возникающей из-за вакуумного окна 7, в патрубке 5 размещен диэлектрический трансформатор 8.

3.2. Реализация устройства ввода "в металле"

Вся волноводная система устройства ввода СВЧ-мощности (рис. 6) выполнена из немагнитной нержавеющей стали.

Рис. 6. Волноводная система устройства ввода СВЧ-мощности.

Хотя нержавеющая сталь имеет меньшую проводимость, чем медь и алюминий, вносимые потери в данном случае не принципиальны, поскольку длительность единичных СВЧимпульсов составляет всего несколько секунд, так что элементы волновода не успевают заметно нагреться, а запаса мощности СВЧ-генератора вполне хватает на компенсацию омических потерь.

3.3. Подключение к установке

Описанное устройство ввода СВЧ-мощности в настоящее время используется для осуществления предионизации на учебно-демонстрационном токамаке МИФИ – MEPhIST-0 [3].

ЗАКЛЮЧЕНИЕ

Таким образом, все поставленные задачи выполнены, устройство ввода СВЧ-мощности в разрядную камеру токамака функционирует в штатном режиме. В дополнение к описанному устройству ввода мощности разработан изготовлен и проходит настройку блок измерения уровня падающей и отраженной СВЧ-мощности в комплекте с калибровочной нагрузкой для волноводного тракта сечением 110 × 55 мм².

СПИСОК ЛИТЕРАТУРЫ

 Дегтерев А.Х. // Вестник Российского университета дружбы народов. Серия: Международные отношения. 2019. Т. 19. № 3. С. 480. https://doi.org/10.22363/2313-0660-2019-19-3-480-489 2. High Frequency Structure Simulator – user's guide.

http://anlage.umd.edu/HFSSv10UserGuide.pdf

3. Alieva A., Prishvitsyn A, Efimov N., Krat S., Isakova A., Kaziev A., Vorobyov G., Kurnaev V. // Physics of Atomic Nuclei. 2023. V. 85. P. 2082. https://doi.org/10.1134/S1063778822090022

ПОДПИСИ К РИСУНКАМ

- Рис. 1. Преобразователь типов колебаний.
- **Рис. 2.** Частотная характеристика коэффициента стоячей волны (КСВ) преобразователя типов колебаний.
- **Рис. 3.** Часть сечения электромагнитной модели трансформатора (1) для "просветления" вакуумного окна (2), линия протекания поверхностных токов (3).
- Рис. 4. Дроссельное сочленение. Область гальванической развязки отмечена стрелкой.
- Рис. 5. Общая схема устройства ввода СВЧ-мощности.
- Рис. 6. Волноводная система устройства ввода СВЧ-мощности.

Рис. 1.

Рис. 2.

Рис. 4.

Рис. 5.

Рис. 6.

Для связи с авторами:

Горбатов Сергей Андреевич E-mail: gorbatovsa004@gmail.com Тел.: 8-910-596-83-65 (моб.)

Для переводчика:

DEVICE FOR INPUT OF MICROWAVE POWER INTO THE DISCHARGE CHAMBER OF THE EXPERIMENTAL INSTALLATION

A system is described for introducing microwave power into the vacuum chamber of a tokamak for pre-ionization of the gaseous medium located there in order to facilitate subsequent discharge in it. Three main problems arising in this case are considered, and a way to solve them is proposed. The calculation model of the electromagnetic structure includes a mode converter, a dielectric transformer and a galvanic isolation unit. All geometric parameters of the device components were optimized. The described microwave power input device is made of non-magnetic stainless steel and it currently used at the MEPhI training and demonstration tokamak.

ЛИТЕРАТУРА

1. Degterev A. // Vestnik RUDN. International Relations. 2019. V. 19. № 3. P. 480.

https://doi.org/10.22363/2313-0660-2019-19-3-480-489

2. High Frequency Structure Simulator – user's guide.

http://anlage.umd.edu/HFSSv10UserGuide.pdf

3. Alieva A., Prishvitsyn A, Efimov N., Krat S., Isakova A., Kaziev A., Vorobyov G., Kurnaev V. //

Physics of Atomic Nuclei. 2023. V. 85. P. 2082.

https://doi.org/10.1134/S1063778822090022