ПРИБОРЫ, ИЗГОТОВЛЕННЫЕ В ЛАБОРАТОРИЯХ

УДК 53.084.876

ОГРАНИЧИТЕЛЬ ТОКА ВЫСОКОВОЛЬТНОГО ПРОБОЯ

© 2024 г. С. В. Гонтарев

Поступила в редакцию 09.10.2023 г. После доработки 30.10.2023 г. Принята к публикации 20.11.2023 г.

Ограничитель тока высоковольтного пробоя разработан для проведения исследований поляризации и устойчивости к воздействию высокого напряжения диэлектрических пленок для датчиков вибраций. В процессе исследований высокая напряженность поля может приводить к деградации пленок различного состава с разной скоростью и, соответственно, вызвать электрический пробой пленки через неопределенное время в ходе эксперимента. Ограничение тока и времени воздействия разряда позволяет свести к минимуму тепловое разрушение пленки и, тем самым, сохранить возможность дальнейшего исследования пленки.

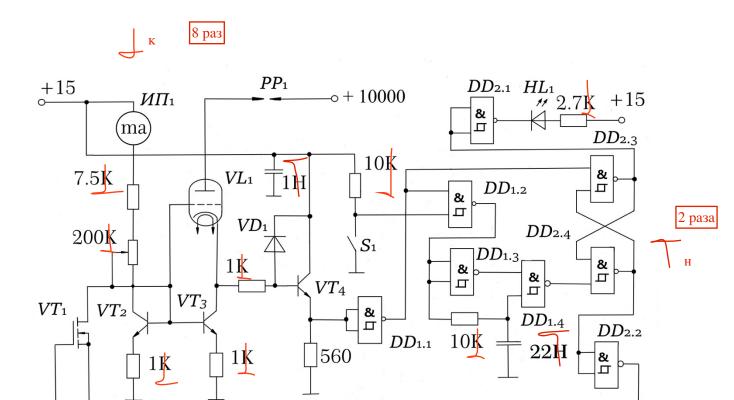
Рис. 1

Электрическая схема приведена на рис. 1. Ограничение тока разряда выполняется лампой VL_1 . В качестве регулирующего элемента VL_1 используется высоковольтный триод ГП-5 [1]. Высокое быстродействие ограничения тока разряда достигается включением VL_1 и зеркала тока на транзисторах VT_2 , VT_3 по схеме компаратора токов. Величина тока ограничения задается резисторами сопротивлением 7.5 кОм и 200 кОм. Резистор сопротивлением 7.5 кОм ограничивает максимальную величину тока защиты.

Схема отключения тока выполнена на микросхемах DD_1 , DD_2 . В приборе использованы микросхемы К1561ТЛ1. Напряжение с катода VL_1 через эмиттерный повторитель VT_4 подается на компаратор $DD_{1.1}$. Амплитуда импульса ограничивается быстродействующим диодом VD_1 . $DD_{1.1}$ переключает триггер защиты на элементах $DD_{2.3}$, $DD_{2.4}$ и ключ на транзисторе VT_1 . VT_1 уменьшает управляющий ток токового зеркала до нуля, что приводит к запиранию лампы VL_1 . Сброс защиты выполняется формирователем импульса $DD_{1.3}$, $DD_{1.4}$. Элемент $DD_{1.2}$ запрещает сброс защиты при превышении заданной величины тока разряда. Индикация срабатывания защиты осуществляется светодиодом HL_1 .

При проведении исследований пленка устанавливается между электродами PP_1 . Настройка величины тока ограничения проводится по показаниям прибора $U\Pi_1$. В процессе измерений возможно возникновение разрядов различной природы с различной амплитудой токов. Регулируемый порог ограничения дает возможность не отключать высокое напряжение для разрядов, не разрушающих пленку. При увеличении тока пленки над заданным порогом устройство переходит в режим отключения тока. Для проведения нового цикла измерений необходимо понизить испытательное напряжение до нуля и на короткое время замкнуть переключатель S_1 .

Ограничение тока высоковольтного пробоя позволяет проводить длительные исследования поляризации и устойчивости пленок к воздействию высокого напряжения без постоянного контроля со стороны экспериментатора. Отсутствие теплового повреждения при пробое делает возможным дальнейшее исследование пленок. Преимуществом устройства является отсутствие зависимости тока стабилизации и порога отключения от испытательного напряжения. Ограничение тока допускает использование в эксперименте высоковольтных источников питания, не имеющих защиты от многократного короткого замыкания разрядом. Прибор имеет следующие характеристики: максимальная величина испытательного напряжения короткого замыкания разрядом составляет 10 кВ, а максимальный ограничиваемый ток – 2 мА.


СПИСОК ЛИТЕРАТУРЫ

1. https://rudatasheet.ru/tubes/gp-5/

Адрес для справок: Россия, 117997, Москва, Нахимовский проспект, 36. Институт океанологии им. П.П. Ширшова Российской академии наук. E-mail: svg@ocean.ru

ПОДПИСИ К РИСУНКАМ

Рис. 1. Электрическая схема ограничителя тока высоковольтного пробоя: триод VL_1 – ГП-5, транзистор VT_1 – 12N10, транзисторы VT_2 , VT_3 – кт940, транзистор VT_4 – кт3102Д, диод VD_1 – кд522, микросхемы DD_1 , DD_2 – К1561ТЛ1.

Для связи с автором:

Адрес: 117997, Российская Федерация, Москва, Нахимовский проспект, дом 36

Электронный адрес для переписки — E-mail svg007@mail.ru.

Дополнительный адрес — svg007@rambler.ru

Телефон — +7 985 333 0120